TO APPEAR IN THE PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON
MACHINE LEARNING. ANN ARBOR, MI (JUNE 1988).

Improved Decision Trees:
A Generalized Version of ID31

Jie Cheng
Usama M. Fayyad
Keki B. Irani
Zhaogang Qian
Department of Electrical Engineering and Computer Science
The University of Michigan

Please direct all correspondence to:
Prof. Keki B. Irani
Computer Science and Engineering
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122
(313) 747-3820
INTERNET: Irani@um.cc.umich.edu

Abstract

A popular and particularly efficient method for inducing classification rules from ex-
amples is Quinlan’s ID3 algorithm. This paper examines the problem of overspecialization
in ID3. Two causes of overspecialization in ID3 are identified. An algorithm that avoids
some of the inherent problems in ID3 is developed. The new algorithm, GID3, is applied
to the development of an expert system for automating the Reactive Ion Etching (RIE)
process in semiconductor manufacturing. Six performance measures for decision trees are
defined. The GID3 algorithm is empirically shown to outperform ID3 on all performance
measures considered. The improvement is gained with negligible increase in computational
complexity.

Keywords: Concept Learning, Empirical Techniques, Empirical Evaluation.

T This work is supported in part by SRC under contract 87-MP-085, and in part by the AFOSR under contract
F49620-82-C0089



Improved Decision Trees: A Generalized Version of ID3

Jie Cheng (JC@eecs.umich.edu)
Usama M. Fayyad : (Fayyad@ub.cc.umich.edu)
Keki B. Irani (Irani@caen.engin.umich.edu)
Zhaogang Qian (ZQ @eecs.umich.edu)

Department of Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, MI 48109-2122, U .S A.

Abstract

A popular and particularly efficient method for inducing classification rules from examples is Quinlan’s ID3
algorithm. This paper examines the problem of overspecialization in ID3. Two causes of overspecialization
in ID3 are identified. An algorithm that avoids some of the inherent problems in ID3 is developed. The new
algorithm, GID3, is applied to the development of an expert system for automating the Reactive Ion Etching
(RIE) process in semiconductor manufacturing. Six performance measures for decision trees are defined.
The GID3 algorithm is empirically shown to outperform ID3 on all performance measures considered. The
improvement is gained with negligible increase in computational complexity.

1 Introduction

Automated knowledge acquisition is one of the primary areas of application for concept leaming
techniques[Quin86]. Some steady and promising advances towards the direction of autonomous
knowledge acquisition have taken place[Mich78,Mich79,Moze86,Quin86]. In this paper, we focus on
Quinlan’s ID3 approach[Quin83]. Some of the problems of ID3, and their causes, are identified. We
present a novel approach designed to avoid these problems without imposing any significant increase
in computation. Finally, the new approach is empirically verified to be superior to ID3.

A Program that learns from examples is presented with examples of different concepts (classes).
For each concept, the program constructs a description that covers all of its examples and excludes
all others. The ideal goal of such a leaming program is to construct the minimal set of maximally
general concept descriptions. This, in general, is an NP-complete problem[Haus87], which makes a
heuristic approach necessary.

2 The ID3 Approach

A particularly efficient method for exploring the space of concept descriptions (expressions) is to
generate a decision tree[Hunt66,Quin83,Quin86].

In the case of ID3, each branch in the tree corresponds to an expression of the form: (4; = V;;),
where V;; is the j-th value of attribute A;. Thus for each (non-leaf) node, ID3 chooses an attribute, and
creates a branch for each value of that attribute appearing in the subset of examples corresponding to
the node. ID3 is applied recursively to each non-leaf node. A set of examples along with the decision
tree generated by ID3 are shown in figure 1.

An algorithm for decision-tree generation requires the specification of the following:

1. A rule for choosing an attribute to use in partitioning the examples at a node.

2. A rule for choosing a particular partition of the examples.

3. A rule for deciding when to stop partitioning a node, thus deeming it a leaf node.
4. A rule for assigning a leaf to a class.



Improved Decision Trees 2

A B Class
e-1 al bl c1
e-2 al b2 c2
-3 a2 b2 c2 > i
e-4 a2 b3 cl
e-5 a3 bl c3 c3
e-6 a3 b2 €3 bl b2 b b3
Two test examples not in the training set:
e : (A = a3), (B = b3) c1l c2 c2 c1
e': (A = al), (B = b3)

Figure 1. Sample decision tree generated by ID3

In this paper we are concened with the details of rules 1 and 2. In the case of ID3, rule 2 is
realized by creating a subset for each value of the attribute chosen in 1. We now focus our attention
on the details of rule 1 in ID3. For a detailed simplified discussion of this algorithm, readers are
referred to [Quin86]. Let A be a set of m attributes {A;, Az,..., A}, let C be a set of p classes
{C1,C3,...,Cp}, and let S be a set of examples at some node. The set of possible values for
an attribute A; is referred to as Range(A;). Each example in S is an m + 1-tuple of the form:
(1, V2, ...V, Ck), where V; € Range(A;),i =1,...,m, and Cj € C is the class of the example.

Define Psc,, the probability of occurence of each class Cx € C in a set S of examples, to be
the proportion of examples in S that are in class Cx. As a measure of the randomness of example
distribution in a set S over the possible classes in C, the information measure is defined to be:

P
I(S) = = }_ Ps.c, log, Psc,.
k=1
ID3 tries to choose a partition of S that results in subsets in which the examples are distributed
“less randomly” over the possible classes. To choose the attribute that would best achieve this, for
each attribute A; that takes more than one value for the examples in S, ID3 partitions S into the sets
S; consisting of all examples in § having value V; for attribute A;: S; = {e € S|A4; = V; for e}.
The information entropy of the resulting partition is given by:
S .
BAns)= ¥ s 1)
V; €ERange(A;)

For further partitioning of a node S in the tree, ID3 chooses the attribute A; which maximizes:

Gain(A;, S) = I(S) — E(A;, S) (2)

3 Problems with the ID3 Approach

ID3 is essentially employing a heuristic, hill-climbing, non-backtracking search through the space of
possible decision trees. Thus, weaknesses in the ID3 algorithm may cause it to “miss” better decision
trees for the same data. By “better” we mean “more general”. In section 5.1, we quantify this notion
by defining measures of generality for decision trees. This section addresses some of the problems
inherent in the ID3 approach that cause overspecialization to occur. In [Quin87], Quinlan deals with
the issue of reducing the effect of overspecialization in decision trees by retrospectively pruning a tree
or its corresponding set of rules. On the other hand, we aim at avoiding overspecialization during the
generation of a decision tree by improving the search heuristic.

Perhaps the most pronounced of the problems is the irrelevant values problem. When ID3
chooses an attribute for branching out of a node, it creates a branch for each value of that attribute



Improved Decision Trees 3

that appears in the examples. Some of the values of that attribute may be relevant to the classification,
yet the rest may not be. The subtrees generated by such irrelevant values will result in overspecialized
classification rules—rules that check for unnecessary or irrelevant preconditions.

Another related problem is the missing branches problem. The missing branches problem is
essentially a reduction in the inductive capacity of the tree. It is due to the fact that some of the
reduced subsets at the non-leaf nodes do not necessarily contain examples of every possible value
of the branching attribute. Figure 1 shows an example illustrating the missing branches problem.
Both e and ¢’ are examples never seen by the program. Yet the ID3 tree shown classifies e and fails
to classify e’. If a high degree of induction is desirable, this problem should be avoided whenever
possible. Section 4.2 illustrates how the proposed approach reduces the likelihood of occurence of
missing branches.

Another problem with the ID3 heuristic is that the formula of equation (2) was shown to be heavily
biased in favour of attributes with larger ranges of values[Quin86]. In [Quin86] Quinlan introduced a
new measure to compensate for this bias. For an attribute 4; € A, and a set S of examples partitioned
into the subsets S; consisting of all examples in S that have value V; for the attribute A4;,

S; S;
IV A)=- ) u1082(M)-
|5 |5
V; €Range(A;)

IV (A;) measures the degree of randomness of the distribution of the examples in S over the values
of A;. Note that it does not take into account what the classes of these examples are. The gain
formula of equation (2) is modified to be Gain(4;,S5) = %@. We refer to this version of
ID3 as ID3-IV.

4 An Alternate Approach

4.1 The Proposed Approach

In order to avoid the irrelevant values problem, we have modified the ID3 algorithm described above.
For a given subset of examples, we choose an attribute to be used in inducing a partition on that
set, but we do not necessarily branch on every value of that attribute. We have therefore deviated
from ID3 in the specifications of rules 1 and 2 of section 2. For a set S of examples at a node, the
algorithm shown on the following page is used to determine which attribute to use for a partition
(rule 1), and how to use it to induce the partiton (rule 2).

Essentially, the algorithm is similar to ID3 except that not every value of the attribute is chosen
to create a branch. In order to avoid branching on irrelevant values of the attribute, only the values
that appear to be relevant, according to the information measure, may potentially be branched on.
All other values are lumped together in one default value for the attribute. The tolerance level
(TL) is user determined; we have not yet determined how to set it systematically. TL specifies the
degree of tolerance for deviation of the entropy measure of an attribute-value pair from the minimal
entropy measure over all pairs (see algorithm on next page for the definitions of TL and the set of
phantom attributes AP). Attribute values that fall outside this tolerance range are treated as a single
“default” value. Note that if all values of an attribute fall outside the tolerance range, no corresponding
phantom attribute is constructed. Thus |[AP| < |A|. Furthermore, |Range(AP;)| < |Range( A;)| for
all AP; € AP.

Setting TL= oo results in behaviour that exactly matches that of ID3. The other extreme occurs
when TL= 1.0, where only the attribute-value pairs whose entropy measure exactly matches the min-
imal entropy measure may potentially be branched on; the rest are grouped together in a “default”
branch. In most cases, this setting is expected to result in a binary decision tree—branching on one



Improved Decision Trees 4

value with the rest of the values on the default branch. As TL varies from 1.0 to oo, the program
generates different trees. For a given set of data, we claim the existence of a setting for TL that
results in the generation of a “better” decision tree than that of ID3. The systematic determination of
the proper setting of TL for a given set of data remains as future work. In section 5 we empirically
verify our claim. In subsequent sections of this paper, we refer to our algorithm as the Generalized
ID3 (GID3) algorithm.
Begin Algorithm
1. For each attribute-value pair (A;, V;) appearing in the examples in S!, create a binary-valued
“temporary attribute” (A; = V;) which takes the value TRUE for examples that have value V
for attribute A;, and the value FALSE for all other examples in S.
2. For each binary-valued temporary attribute (A; = V;) defined in step 1, E((4; = V;),5) as
defined in equation (1) is computed. Note that Range((A; = V;)) = {TRUE,FALSE}.
3. Let MIN-E be the minimum of the values computed in step 2 above.
4. Let Thrshld-E = TL x MIN-E, where TL > 1.0 is referred to as the tolerance level and is
determined by the user.

5. Construct a set of phantom attributes, AP, as follows:
(a) AP +—s5

(b) For each attribute A; € A, for which more than one value appears in the examples in 5,
Do
i. Default — 0; R — 0.
ii. For each temporary attribute (A; = V;) defined in step 1 Do
IF E({(A; =V;),S) < Thrshld-E
THEN R — RU {V;}
ELSE Default — Default U{V;}

ili. IF R # 0 THEN AP — AP U {AP;}
where AP; is the phantom attribute corresponding to A;,
and Range(AP;) = R U { Default }.
6. Conduct the ID3-IV algorithm to choose an attribute out of the set of phantom attributes AP
constructed in 5.
End Algorithm.

4.2 Overcoming ID3 Problems

The procedure described above is obviously designed to avoid the irrelevant values problem. As a side
effect, the procedure will also generate trees that are less likely to suffer from missing branches. Figure
2 illustrates how the missing branches problem may potentially be avoided by the new approach. The
problems of the tree of figure 1 are overcome by the tree of figure 2. Note that both e and ¢’ of
figure 1 are now classifiable, indicating a higher inductive power for the tree generated by the new
approach.

S Evaluation Criteria and Test Results

5.1 Evaluation Criteria

Little work has been done on evaluating or comparing decision trees. Quinlan[Quin87] used the
number of nodes in the tree as a measure of its optimality. He also used the percentage error rate

!Values V; appearing on the path from the root to the node representing S are excluded from consideration.



Improved Decision Trees 5

Two test examples not in the training set:

e : (A = a3l), (B = b3)
e': (A = al), (B = b3)

¢l @2 el
Figure 2. An improved decision tree generated by GID3

when the tree is used to classify examples not in the training set?. A decision tree may also be
translated into a set of rules that perform an equivalent classification. Some performance measures
may be defined on this set of classification rules as well. We list below our measures of performance.
The (T) and (]) symbols indicate that the measure is to be maximized or minimized respectively.

1. Number of nodes in the tree (|).

2. Percentage errors on classifying unseen examples (|).

3. Number of rules in rule-base (leaves in tree) (|). This measures how close the algorithm gets
to achieving the ideal goal of finding the minimal set of rules[Quin87].

4. Total number of preconditions in rule-base (|). This measures the generality of the entire set
of rules. It is a more accurate measure of generality than the average number of preconditions
per rule, since the latter is not very indicative if the number of rules is large.

5. Average example support per rule (1). This is the average number of examples in the test set
on which a rule is applicable. It is a measure of the applicability (generality) of a rule.

6. Average number of decisions per example in the test set (|). This is a data-dependent measure
of the efficiency of the generated classification tree.

5.2 Test Domain

The primary motivation for this research is the application of machine leamning techniques to the
development of expert systems for diagnosing faults in the Reactive Ion Etching (RIE) process in
semiconductor manufacturing. The process is at the forefront of the technology and no models for
it exist. Our goal is to apply techniques of learning from examples to speed up the process of
constructing a knowledge base to be used in regulating the manufacturing process. Examples are
readily available, but rules are hard to come by. This makes the domain a prime application area for
machine leaming. Among other approaches, we attempted the ID3 approach. ID3 produced rules that
were overspecialized, or that included irrelevant preconditions and excluded important conditions.
This led us to investigate and identify some of the causes for overspecialization. The test results
verify that the GID3 algorithm does indeed reduce overspecialization problems significantly.

5.3 Testing Method and Results

In order to verify that the new method is indeed an improvement over ID3, we conducted tests
on artificially generated data. This was necessary in order to establish an objective rather than a
subjective basis for judging the program’s performance. A set of rules was constructed manually
for diagnosing a well-understood portion of the RIE process. The rules were verified physically and
semantically by the domain experts. This set of rules was used to generate random examples. Each
rule specifies the values of only a few of the available attributes. Since attributes not appearing in
a rule’s precondition are considered irrelevant to the classification task, random values are generated
for those attributes in order to obtain examples. The goal of the learning program is then to attempt to

?Both ID3 and GID3 guarantee 100% correctness when their generated trees are used to classify the training set.



Improved Decision Trees 6

200

300

ox-1
ox-2
ex-3
ox-4
ox-5
ox-8
ox-7
ox-8
ox-9
ex-10

NUMBER OF NODES

ooamoocaan

0 § 1.1 1.2 1.3 1.4 1.5 0 1.0 1.1 1.2 1.3 1.4 1§

— Gios J 108-(¥ 1D L GiD3 J 1D3-1V 1D3
Figure 3. Number of rules/leaves in tree Figure 4. Number of nodes in tree
g g
[+
&
3 &
: .
X
3 o
: :
2 2
2
0 1.0 1.1 1.2 1.3 1.4 1.5 0o 1.0 1.1 1.2 1.3 1.4 15
L GID3 ] 1D3-1VID3 L GID3 ] 1D3-1V 103
Figure 5. Average support per rule Figure 6. Total preconditions in rule-base

rediscover, or approximate, the original set of rules. This establishes a reference point for comparing
the performance of the leaming algorithms.

In order to eliminate random variation, 10 independent experiments were conducted on 10 inde-
pendently generated random data sets®. The different shadings that appear in each individual column
in the graphs of figures 3-6 correspond to the 10 experiments. Note that the heights of the compos-
ite columns are proportional to the corresponding statistical average over the 10 experiments. The
performance data for measures 2,5, and 6 were collected by using the decision trees generated to
classify examples in a fixed test set of 5000 examples. The graphs of figures 3-6 depict results for
performance measures 1-4. Measure 6 was essentially the same for all methods; it is therefore not
included because of space restrictions.

It is evident from these graphs, that performance varies with different settings for TL. Furthermore,
for some setting of TL, GID3 outperforms ID3 on all performance measures. Results for performance
measure 2 are shown in figure 7 (averaged over 10 experiments). For this chart, the two extra
columns on the far right, labelled ID3(Guess) and ID3-IV(Guess) need to be explained. One of our
goals is to overcome overspecialization in ID3 by avoiding the missing branches problem. A missing
branch in ID3 corresponds to failure to predict a class for some examples. If we claim that GID3
reduces missing branches, we have to verify that it is not simply replacing a missing branch by some
random guess (default branch) of some class. The two columns labelled ‘(Guess)’ show the result
of replacing every occurence of a missing branch in ID3 by a branch leading to a leaf node that is
randomly assigned to some class in C. The graph verifies that GID3 is doing better than random
guessing. This is evidence in support of the fact that GID3 is actually avoiding the missing branches
problem.

%A training set consists of 200 examples on the average



Improved Decision Trees 7

14%

5%

4

- ~

3-1VT 1D3
GID3 (Guess) (Guess)

Figure 7. Average percentage of errors
6 Conclusions and Future Work

We have identified some problems in the ID3 approach for generating decision trees and hypothesized
their causes. A new algorithm, GID3, targeted at avoiding these problems, is formulated. We
have empirically demonstrated that the new method outperforms ID3 on all performance measures
considered. The trees generated using the new approach are more compact, more reliable, and more
general decision trees than their ID3 counterparts. The gains are achieved with a negligible increase
in computational cost. We have not yet developed an algorithm for setting the single parameter (TL)
in our system; this remains as future work. We have, however, verified the existence of a setting for
TL that results in an algorithm which avoids overspecialization in ID3.

7 Acknowledgements

This work is supported in part by SRC under contract 87-MP-085, and in part by the Air Force Office
for Scientific Research under contract F49620-82-C0089. Thanks to Clare Congdon and Kristina Van
Voorhis for proof reading earlier drafts of this paper.

References

[Haus87]  Haussler, D. “Leaming conjunctive concepts in structural domains.” Proceedings of the National
Conference on Artificial Intelligence, AAAI-87. pp. 466-470. Seattle, WA (1987).

[Hunt66]  Hunt, E.B., Marin, J., and P.J. Stone Experiments In Induction. New York: Academic Press, (1966).

[Mich78] Michalski, R.S. and Larson, J.B. “Selection of most representative training examples and incre-
mental generation of VL1 hypotheses: The underlying and the description of programs ESEL and
AQ11. Report No. 867. Computer Science Dept., University of Illinois, Urbana, (1978).

[Mich79] Michie, D. (Ed.) Expert Systems in the Micro Electronic Age. Edinburgh: Edinburgh University
Press (1979).

[Moze86] Mozetic, I. “Knowledge extraction through learning by examples.” In Mitchell, T.M., Carbonell,
J.G., and Michalski, R.S. Machine Learning: A Guide to Current Research. pp. 227-231. Boston:
Kluwer Academic Publishers, (1986).

[Quin83]  Quinlan, J.R. “Learning efficient classification procedures and their application to chess endgames.”
In Michalski, R.S., Carbonell, J.G., and Mitchell, T.M. Machine Learning: An Artificial Intelligence
Approach. pp. 463-482. Palo Alto, CA: Tioga Publishing Company, (1983).

[Quin86]  Quinlan, J.R. “Induction of decision trees.” Machine Learning 1, No. 1. pp. 81-106. Boston: Kluwer
Academic Publishers, (1986).

[Quin87]  Quinlan, J.R. “Generating production rules from decision trees”. IJCAI-87. pp. 304-307. Milan,
Italy (1987).



