Induction of Decision Trees from Inconclusive Data

Scott Spangler Usama M. Fayyad Ramasamy Uthurusamy
Knowledge Engineering Group Artificial Intelligence Lab Computer Science Department
Advanced Engineering Staff EECS Department GM Research Laboratories
GM Technical Center The University of Michigan GM Technical Center
Warren, MI 48090, USA Ann Arbor, MI 48109, USA Warren, MI 48090, USA

Spangler@gmr.com Fayyad@ub.cc.umich.edu Samy@ gmr.com

Abstract: Leaming from inconclusive data is an important
problem that has not been addressed in the concept leamning lit-
erature. In this paper, we define inconclusiveness and illustrate
why ID3-like algorithms are bound to result in overspecialized
classifications when trained on inconclusive data. We address
the difficult problem of deciding when to stop specialization
during top-down decision tree generation, and describe a mod-
ified version of Quinlan’s ID3 algorithm, called INFERULE,
which addresses some of the problems involved in leamning
from inconclusive data. Results show that INFERULE outper-
formed ID3 (with and without pruning) in tests on a real-world
diagnostic database containing automobile repair cases.

1 Introduction

One of the most important problems standing in the
way of applying machine induction algorithms, such as
ID3[Quin86a] and its variants, to real-world data has not
been addressed in the machine learning literature. This
deficiency in ID3-like programs arises from the implicit
assumption that enough information is available in the
data to decide exactly how each data point should be
classified. The INFERULE algorithm described in this
paper is designed primarily to address this problem of
inconclusive data sets. This problem arises when the at-
tributes used in describing a set of examples are not suffi-
cient to specify exactly one outcome (class) per example.
In such a situation, given a training set of examples, and
sufficiently many (possibly irrelevant) attributes, it may
be possible to classify the training set perfectly. How-
ever, such a classification will necessarily fail on future
test sets of unseen examples. First, we define what we
mean by inconclusive data.

Definition: A data set of examples expressed in terms
of a set of attributes that are known to be noise-free is
said to be inconclusive if there exists no set of rules uti-
lizing only the given attributes that classifies all possible
(observed and unobserved) examples perfectly. i.e. the
available attributes do not contain the necessary informa-
tion for predicting a unique outcome for each example.

Note that it is possible for the program to classify the

training set perfectly even when the data is inconclusive.
The above definition suggests that if some set of abso-
lutely correct rules exists, then it must necessarily make
use of some attribute(s) not provided to the learning pro-
gram. We call such a set the governing rule set. Thus the
governing rule set is not discoverable by a learning pro-
gram that is given an inconclusive training set. A sure
sign of inconclusiveness is that, given data that is known
to have no (or very little) noise, the learning program
always produces a perfect classification of the training
set that has a high error rate when used to classify new
(test) data.

The only proper way to handle inconclusive data is to
resort to probabilistic rather than categorical classifica-
tion rules. In this case a rule may predict more than one
outcome. Associated with each outcome is a likelihood
measure (probability)[Brei84,Quin86a].

In section 2.2 we discuss how inconclusive data dif-
fers from noisy data as discussed in the machine learn-
ing literature. To date, induction research has not really
addressed the problems arising from inconclusive data.
Unfortunately, such data sets are not rare in industry.
In fact, it has been our experience that most diagnostic
databases commonly found in an industrial environment
contain only a fraction of the information necessary to
correctly classify unseen cases.

Yet such data sets, though imperfect, are certainly far
from useless. There may be many important and useful
rules in the governing rule set that do not reference inac-
cessible attributes. In addition it is nearly always helpful
in diagnosis to narrow down the possible classifications
to one of a few possibilities as opposed to hundreds. Our
experience with large inconclusive data sets at General
Motors, led us to investigate the possibility of a learning
algorithm that can extract useful information. Our appli-
cation domain is a very large database of car problems
and their fixes. Using ID3 and some of its variants to
induce rule sets from training subsets of this database
always resulted in a perfect classifier for the particular
training sets. However, the classifier had very low ac-
curacy on predicting the outcomes of unseen cases even
with very large training sets.

Customer

emp- iCustomer]| Outcome:
C“J“O‘.ll:nt:rlo. Abuse Replace Abuse Droppe Kicked
1 |Basic | High |M |Dropped Casing
2 |Utima|low |Tu |Dropped Casing
3 |Excel |Low |W |Dropped Casing
4 |Excel [High |W |Dropped | Widget || o
§ |Basic [Low |Th |Dropped Widget M Tu
6 |Uttima|low |F |Dropped Casing T
7 |Basic [Llow |M |Kicked woozle emp. U
8_JUima|low |M _|Kicked Nozzle High Low

Figure 1: Data Set for Diagnosing Widget Failures and the Corresponding ID3 Tree

2 Shortcomings of ID3

ID3[Quin86a] induces a decision tree for classifying
the examples in the training set. The decision tree is
generated by setting the root node to be the set of training
examples, partitioning the examples in the root node thus
creating child nodes, and recursively partitioning each of
the child nodes to get the next levels in the tree. Thus for
each (non-leaf) node, ID3 selects an attribute, and creates
a branch for each value of that attribute appearing in
the subset of examples corresponding to the node. This
process of specialization is then applied recursively to
each non-leaf node. A set of examples along with the
decision tree generated by ID3 are shown in figure 1.

The formulation of an algorithm for decision-tree gen-
eration requires the specification of the following 4
rules[Brei84]:

Rule 1: selects an attribute to use in partitioning the ex-
amples at a node.

Rule 2: chooses a particular partition of the examples
based on the attribute chosen by rule 1.

Rule 3: decides when to stop partitioning a node.

Rule 4: assigns a class to a leaf.

ID3 achieves rule 1 by applying an information en-
tropy measure to choose the attribute that produces the
partition with the least “randomness” in the distribution
of classes (see [Quin86a] and [Chen88] for a detailed
discussion). Rule 2 is realized by creating a subset for
each value of the attribute chosen by rule 1. ID3 stops
further partitioning of a node when all examples in it
are all of one class, or when all the attributes have the
same values for all the examples (rule 3). In case the
examples of a leaf node are not all of the same class,
assignment by majority or by probability may be used
for rule 4[Brei84,Quin86b]. Rules 3 and 4 are trivially
decided in the case of ID3 when the training set can be
perfectly classified. Unfortunately, perfect classification
of the training set is not always desirable. This is true,
for instance, if the training data contains noise. Quinlan
attempted tree pruning to deal with noise, and this has
been somewhat successful [Quin86¢c]. But the problem
is more serious when the input data is inconclusive. We

discuss why pruning does not apply in this case in section
22,

2.1 A Simple Example

As an example of how overspecialization occurs on
inconclusive data, consider the following expert system
rules for diagnosing widget failures.

IF widget was dropped | IF widget was dropped
AND fell less than 5 ft. | AND fell more than § ft.
THEN replace casing. THEN replace widget.

Let the two rules above be part of the governing rule
set as defined in section 1. Now assume that ID3 is
given the data set shown in figure 1, and that the attribute
“height of widget’s fall” is not provided to it. ID3 would
then generate the tree shown in figure 1.

Obviously, the problem is that in order to obtain a tree
which has only a single classification at each leaf node,
it was necessary to specialize on irrelevant features. We
would much rather see the specialization process stopped
where the dotted line is drawn in the figure, thus produc-
ing the following probabilistic rule:

IF (Customer Abuse = dropped)

THEN Fix = replace casing (67%)

AND Fix = replace widget (33%).
This rule contributes useful knowledge about the proper
classification. It is also an improvement over the ID3
output, which would ask the user for extraneous infor-
mation and ultimately produce an unjustifiably narrow
diagnosis. In section 3 we investigate how ID3 may be
modified to reduce the overspecialization problem. Pri-
marily, we are addressing the specification of rule 3 of
the induction algorithm. We also propose more appro-
priate ways for realizing rules 1, 2, and 4.

2.2 Why Not Prune The Tree?

Inconclusive data sets are different from noisy data
sets. In a noisy domain one can apply statistical tech-
niques to prune away conditions (branches) which seem
irrelevant to predicting a particular classification[Brei84,
Quin86¢c,Quin87). But for an inconclusive data set the

assumption upon which some pruning techniques are
based, namely that there is a single correct classifica-
tion for any combination of attribute values, is no longer
valid. For pruning, some algorithms assume that a single
class is the proper outcome of each rule and prune with
respect to that outcome and thus remove preconditions
of rules based on their statistical relevance to the single
(usually most probable) outcome[Quin86¢,Quin87]. This
is clearly inappropriate if the attributes used can never
allow perfect classification in the first place. In this case,
it is not even correct for the algorithm to make the as-
sumption that there should be only one class at each leaf
node.

3 The INFERULE Algorithm

The INFERULE algorithm improves upon ID3 to
make it more applicable to inconclusive data sets. This
is achieved by adding a mechanism for deciding when
to stop partitioning a given node in the tree (rule
3). For rule 4, INFERULE employs the probability
method[Quin86b].

INFERULE differs from ID3 in that it generates
strictly binary trees. This is a result of the fact that
INFERULE specializes on the best attribute-value pair,
rather than the best attribute, at any choice point. The
advantage to this approach is that the data is never sub-
divided unnecessarily as is the case when ID3 special-
izes on an attribute having many values, only a few of
which are actually relevant to diagnosing the failure. In
[Chen88] a detailed discussion of weaknesses in ID3 re-
sulting from this problem is provided.

3.1 Choosing An Attribute-Value Pair

We shall now turn our attention to the method used by
INFERULE in selecting an attribute-value pair for par-
titioning the set of examples into two subsets. Let S be
a set of examples. Each example consists of a specifica-
tion of the values of all attributes and a class (outcome).
The class is one of the m possible classes {c1,...,cm}.
Let A be an attribute that takes on one of the values
{ai,...,ar}. We now explain how INFERULE chooses
one of A’s values to partition S.

Let n; be the number of examples in S that belong to
class c;. S(a;) C S is the subset of examples in S with
value a; for attribute A. .S'(a,-,Cj) Cc S(a,-) is the subset
of examples with A = a; and class c;.

e Ei(cj) = LHlln, where |S| denotes the number
of examples in the set S. E;(c;) is the expected
number of examples in S(a;) that have class c;. So
E;(c;) is an estimate of the actual value: |S(a;, c;)|.

e SE(a;) = \/Z'" M&iﬁ&n SE(a;) is
the standard error [an86c] associated with the
E;'s (estimates) defined above?. SE adjusts for
the fact that an estimate that is based on a smaller
data set is less accurate than one based on a larger
set.

o DI(a:) = \/T7wi[Eile;) = 1S(ai,)] DI is
the geometric distance between the two outcome
Vectors: (E.-(cl), E.'(Cz), 5 i ,E.-(cm)) and
(1S(a;, 1)1, 1S(ai, €2)l, - - -, 1S(ai, em)1). Note that
the first vector is the “expected” outcome vector
of the subset S(a;), while the latter is the actual
outcome vector of S(a;).

Finally, define

R is the relative goodness of the attribute-value pair
A = a;. After evaluating all attributes and their val-
ues, the attribute-value pair with the minimum R value
is the one chosen for partitioning the data. A property
of R is that R(a;) = R(—a;), i.e. the two subsets S(a;)
and S — S(a;) evaluate equally in terms of their “dis-
tance” from S. Roughly stated, the goal of this criterion
is to choose an attribute which maximizes the difference
between the outcome vectors of the resulting subsets and
the “expected” outcome vectors. In general, the greater
this difference the more likely it is that the subset parti-
tion induced by A = a; is relevant to the classification.
On the other hand, a small distance indicates that the
distribution of classes in the original set does not signif-
icantly change when the set is partitioned. This would
indicate that A = a; is probably not relevant to the classi-
fication task. The SE term allows for subsets of different
sizes to be fairly compared. It adjusts for the sensitivity
of the DI measure to small variations in |S(a;)| when
the E;’s are small.

We illustrate the notion of geometric distance with the
simple example of figure 2. The example shows two
possible outcome vectors that may result when a set of
56 examples with 4 classes is to be partitioned using
some attribute-value pair. It is assumed that half the
examples in the set satisfy that attribute-value pair.

Note that this measure of attribute merit differs from
ID3’s information entropy measure. In the case of ID3,
the entropy measures the discriminating power of an
attribute by favouring attributes that result in outcome
vectors that are unevenly distributed. Thus an attribute
value is “bad” if its corresponding subset of examples has
equal numbers of examples from different classes. In the

2As a matter of fact, the expression for the standard error SE as
defined may easily be simplified to an expression which is a function
of |S(a;)| only.

C1 C2 C3 C4

[120 [[Jo— ramiscss

original outcome| vector

(subsetof g > (Low Geometric Distance)
50% of examples)

v [eTo]7 6]
| 5 |1o | s.s| 7,5| "bad” (R=1.47)

expected outcome P nnmm

vector of subset

(High "good” (R=0.33)
geometric Possible actual
distamce) outcome vectors

Figure 2: Illustration of the Geometric Distance Measure

case of INFERULE, the merit of an attribute-value pair
is indicated by the fact that the class distribution in its
corresponding subset differs significantly from the class
distribution in the original set.

INFERULE's attribute selection criterion appeared to
give the best results overall in comparison to several
others which were also tried, including:

e Quinlan’s information entropy measure [Quin86a]

e Chi-Squared test with m — 1 degrees of
freedom[Brad76]

o Fisher’s exact test for statistical independence using
class compaction to reduce the input to a two class
problem[Abra64]

3.2 To Specialize or Not To Specialize?
That is The Question

INFERULE's “relative” measure of improvement in
classification gives a natural way for deciding when to
refrain from subdividing a given data set any further. By
comparing the value of the measure R against a threshold
T, one may control whether INFERULE should attempt
to achieve a perfect classification or stop specialization
and return a probabilistic guess of possible classes. IN-
FERULE will halt specialization at a given node when-
ever the value of R exceeds the threshold T for every
possible attribute-value pair.

Performance of the algorithm did not vary substan-
tially with very small changes in the value of T, and
overall it appeared that a value of T' = 0.75 was nearly
optimum for most data sets that we used. A formula for
how T should be varied with respect to the number of
attributes and attribute-values in a data set has not yet
been determined. A setting of 7' = 0.0 would result in
the generation of a single node tree which always predicts
the most frequent class as an outcome. Setting T' = oo
results in the generation of a binary tree that classifies the
examples in the training set perfectly. With this setting,
any avoidance of overspecialization is disabled. With a
setting of T = 0.75, INFERULE would indeed refrain

from specializing the nodes below the dotted line in the
tree of example given in figure 1.

4 Results

The data on which the INFERULE algorithm was
tested contained records of automobile repair cases and
how they were fixed. The data is made up of 8 symptom
(attribute) fields with an average of 34 different values
each. These symptom fields contain information on the
make of car and engine as well as the year of the car and
its mileage. They also contain codes for specific known
problematic symptoms. This information is not sufficient
to accurately diagnose the problem in most cases. Still,
many useful conclusions can be drawn from this data.

Three data sets were constructed each containing dif-
ferent types of automotive repairs. The characteristics of
each of these data sets are given below:

Data Set Number | Avg. Size of | Possible
of Cases | Training Set | Outcomes
Check Engine | 14,175 12,700 44
No Start 4555 3650 32
Rough Engine | 11,531 10,300 47

These three data sets were each randomly partitioned
into training and test sets three different times. The re-
sults were then averaged over the different runs. The
accuracy of a generated tree is defined to be the per-
centage of test cases for which the highest probability
outcome suggested by the tree is the same as the ac-
tual outcome (class). Figure 3a shows the average ac-
curacy for INFERULE, ID3 and ID3 with pessimistic
pruning[Quin86c]. The fourth bar represents the fre-
quency of the most common class and is given as a
baseline for comparison. We used a binary version of
ID3 that uses only the best value of an attribute rather
than branching on each attribute value. The binary ID3
performed better than the traditional ID3 algorithm, thus
we do not show the results of the latter. Figure 3b shows
the average number of rules obtained for each data set,
and figure 3c shows the average runtimes of the three
programs.

Two things the reader should note about these results.
The first is that one of the primary advantages of the
INFERULE approach, namely the ability to suggest sev-
eral potential classifications, is ignored by the accuracy
metric in Figure 3a, since it only considers whether or
not the outcome suggested with the highest confidence
agrees with the actual outcome. The percentage of test
cases for which the actual outcome was among any of the
ones suggested by INFERULE averaged between 80%

3This corresponds to running INFERULE with T = 0.0 as dis-
cussed in section 3.2

@ Most Frequent

10 4

NN

SE
RoughEngine Check Engine No Stant
(c) Time to Run (in Minutes)

Figure 3: Test Results for ID3 and INFERULE on Automotive Data

and 90%. For ID3 with pruning the corresponding per-
centage was only 40-60%. So including multiple guess-
ing would enhance INFERULE’s performance to signif-
icantly higher levels than those shown in the graph. The
second thing to note is that generating a full decision
tree and then pruning it back to a smaller tree is a time
consuming process. INFERULE generates an already
pruned tree without incurring the extra cost of pruning.

5 Conclusions

The primary purpose of this paper is not to introduce
yet another variant of ID3. Instead, we hope to influence
future rule induction research to focus more on incon-
clusive data sets as opposed to conclusive data or data
sets containing small amounts of random noise. After
studying several diagnostic databases at General Motors,
we are convinced that inconclusiveness is a characteristic
that rule induction algorithms must be able to deal with
if they are to have any practical application in industry.

The proper way of handling inconclusive data sets is
to produce probabilistic, rather than categorical, classi-
fication rules. The assumption that rules with a single
outcome are desirable should be abandoned if it is not
statistically supported. This introduces the need for a cri-
terion to determine when specialization is to be stopped
before reaching a single classification. INFERULE ad-
dresses this issue and illustrates that the predicted im-
provement in performance is indeed achieved.

The most important area for future research is to find
a good, universal criterion for halting the specialization
process. The geometric distance test used in INFER-
ULE has some of the properties of a good criterion, but
may still lack generality with respect to different types of
(non-automotive) data sets, especially those with a large
number of attributes. Perhaps this paper will spark some
interest in other research groups to try to discover this
elusive criterion and thus produce a truly practical rule
induction algorithm.

' [Breig4]

Acknowledgements

The authors would like to acknowledge the help of
Andrew Chou in the implementation of INFERULE and
in formulating the distance measure used. Usama M.
Fayyad is supported by a Rackham Predoctoral Fellow-
ship and by the EECS Department of The University of
Michigan.

References

[Abra64] M. Abramowitz and L Stegun. The Handbook of
Mathematical Functions with Formulas, Graphs
and Mathematical Tables. National Bureau of Stan-
dards. (1964).

J.V. Bradely. Probability; Decision; Statistics. pp.
278-281. Prentice Hall Inc. Englewood Cliffs, NJ
(1976).

L. Breiman, J.H. Friedman, R.A. Olson, and
CJ. Stone. Classification and Regression Trees.
Wadsworth & Brooks (1984).

J. Cheng, UM. Fayyad, KB. Irani, and Z. Qian.
“Improved Decision Trees: A Generalized Version
of ID3.” Proceedings of the Fifth International Con-
ference on Machine Learning. pp. 100-107. Morgan
Kaufmann, (1988).

[Quin86a] J. R. Quinlan. “Induction of Decision Trees.” Ma-
chine Learning 1. No. 1. pp. 81-106. 1986.

[Quin86b] J.R. Quinlan. “The effect of noise on concept learn-
ing.” In Machine Learning: An Artificial Intelli-
gence Approach, vol. 2, Michalski ef al (Eds). Tioga
Publishing Company, (1986).

[Quin86c] J. R. Quinlan. “Simplifying Decision Trees.” MIT
Al Memo No. 930, (1986).

[Quin87] J. R. Quinlan. “Generating Production Rules from
Decision Trees.” IJCAI-87. pp. 304-307. Milan,
Italy. (1987).

[Brad76]

[Chen88]

