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1 Introduction and Motivation

In this chapter, we focus on a machine learning approach to the problem of automating
the diagnosis and process control in semiconductor manufacturing. The reactive
ion etching (RIE) has been used as a primary vehicle of application. Automation
promises cost-effectiveness, reliability, predictability, and accuracy. So far, only fixed
simple tasks in manufacturing have been automated. Automation of more complex
tasks, currently requiring intelligent decision making or problem solving on the part
of humans, is a much more difficult task.

One of the goals of Artificial Intelligence (AI) research is to provide mechanisms for
emulating human decision-making and problem solving capabilities, using computer
programs. The first Al attempts at such systems appeared as part of the technology
known as “expert systems”. Expert systems are intended to provide the means of
encoding human knowledge about a specific task in terms of situation-action rules.
The idea is that if such systems are endowed with sufficient knowledge of the task
at hand, they may be able to emulate human expert behavior in most, if not all,
situations that arise during task execution.

Serious difficulties arose that hindered the development of successful expert sys-
tem applications. The first such difficulty is known as the “knowledge acquisition
bottleneck” [9]. Human experts find it difficult to express their knowledge, or explain
their actions, in terms of concise situation-action rules. If pressed to do so, they
typically produce rules that are incorrect, or that have many exceptions. The articu-
lation of specific intuitive knowledge into deterministic rules is a difficult, sometimes
unrealistic, problem for human experts. Interviewing domain experts to extract such
knowledge is also an expensive process demanding time from experts and knowledge
engineers.

A second problem arises in a different situation: What if a task is not well-
understood, even by the experts in that area? An example of this situation is man-
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ifested in our experience with the automation of the RIE process in semiconductor
manufacturing. In such domains, abundant data are available from the experiments
conducted, or items produced. However, models that relate output variables to con-
trolling (input) variables are not available. Experts strongly rely on familiarity with
the data and on “intuitive” knowledge of such a domain. How would one go about
constructing an expert system for such a domain?

The machine learning approach to circumventing the aforementioned hurdles calls
for extracting classification rules from data directly. Rather than require that a do-
main expert provide domain knowledge, the learning algorithm attempts to discover,
or induce, rules that emulate expert decisions in different circumstances by observing
examples of expert-executed tasks.

In addition to the motivations listed above, two other reasons exist for the need
of a machine learning approach. The first is the growing number of large databases
that store instances of diagnostic tasks. Such data is typically accessed by keyword or
condition lookup. As the size of the database grows, such an approach becomes less
effective. Suppose an expert needs to look up cases similar to a case being diagnosed.
A query may easily return hundreds of matches. A method for determining relevant
conditions automatically would be needed in this case.

Another motivation is the evolution of complex systems that have an error detec-
tion capability. Communication networks are an example. Faults are detectable by
the network hardware. Several thousand faults may occur during a day. To debug
such a network, a human would need to sift through large amounts of data in search of
an explanation. An automated capability of deriving conditions under which certain
faults occur may be of great help to the engineer in uncovering underlying problems
in the hardware.

There are several approaches to inducing diagnostic rules from data. In this paper
we do not cover all the details, nor do we review the relevant machine learning litera-
ture. We restrict our discussion to briefly presenting the problem and its complexity,
and then we focus our attention on the induction of decision trees as an efficient so-
lution. We illustrate this discussion with simple examples. We then briefly motivate
and outline our algorithm (GID3) for inducing decision trees.

The second part of the paper provides some details of several industrial applica-
tions in semiconductor manufacturing domains for which GID3 and two of its exten-
sions were used and were found useful by the process and knowledge engineers. The
extensions to the basic decision tree algorithm were in response to two problems that
we faced in our dealings with industrial data. The typical assumption is that large
amounts of data are available when machine learning is to be applied. However, there
are cases when experiments may be very expensive. In such cases, training data are
limited. We developed a system, KARSM, that uses the Response Surface Method-
ology (RSM), coupled with GID3, to generate rules under such conditions. Another
problem we face with industrial data is that in some processes the data may be noisy.
Human recording errors, limited sensor resolution, or sensor or equipment reliability



Table 1: A Simple Training Set of Examples.

example | Selectivity | A line width class
e-1 normal normal power is high
e-2 normal high power is low
e-3 high high power is low
e-4 high low power is high
e-5 low normal flow rate is low
e-6 low high flow rate is low

problems introduce inaccuracies in the values of the attributes. We developed a sys-
tem, RIST, that utilizes statistically robust techniques along with GID3 to deal with
the noise problem.

2 The Machine Learning Approach

The machine learning approach calls for learning the relation between the input vari-
ables and the output variable directly from training data. A training example consists
of a description of a situation and the action performed by the expert in that situa-
tion. The situation is described in terms of a set of attributes. An attribute may be
continuous (numerical) or discrete (nominal). For example, a nominal attribute may
be shape with values { square, triangle, circle}. An example of a continuous attribute
is pressure or temperature. The action associated with the situation, the class to
which the example belongs, is a specification of one of a fixed set of allowed actions.
The class of each training example is typically determined by a human expert during
normal task execution. Example actions may be raise temperature, decrease pressure,
accept batch,... The goal of the learning program is to derive conditions, expressed
in terms of the attributes, that are predictive of the classes. Such rules may then be
used by an expert system to classify future examples. Of course, the quality of the
rules depends on the validity of the conditions chosen to predict each action.

A training example is therefore a list of the values of all the attributes along with

the class to which the example belongs. Assume there are m attributes Ay,..., Am,
k classes Cj,...,Ck. A training example is an m + 1-tuple (b1, by, . .., bm; C;), where
each b; is one of the values of the attribute A;: {ai,...,a,}, and C; is one of the k

classes. A rule for predicting some class C; consists of a specification of the values of
one or more attributes on the left hand side and that class on the right hand side.
As an example, consider the simplified small example set shown in Table 1. This
set consists of six examples e-1 through e-6. There are two attributes: selectivity
and A line width. The attributes can take the values low, normal, and high. There
are three classes: flow rate is high, power is low, and power is high. A simple rule



consistent with these examples may be:
IF (Selectivity = low) THEN Flow rate is low

Note that this is only an illustrative simplification. Typically, the number of examples
of a meaningful training set is at least in the hundreds, while the number of attributes
is usually in the tens.

Note that the rule shown above uses a very simplified set of conditions. Each
condition is a simple test of equality on a single attribute. Even with such a simple
language, the problem of discovering rules from data is very difficult. Assume that
there are m attributes as described above. and that on average an attribute takes
on one of r values. There are k - (r + 1)™ possible rules for predicting the k classes.
It is computationally infeasible for a program to explore the space of all possible
classification rules. In general, the problem of determining the minimal set of rules
that cover a training set is NP-hard. It is therefore likely that a heuristic solution to
the problem is the only computationally feasible one.

2.1 Inducing Decision Trees from Training Examples

A particularly efficient method for extracting rules from data is to generate a decision
tree [2, 14]. A decision tree consists of nodes that are tests on the attributes. The
outgoing branches of a node correspond to all the possible outcomes of the test at
the node. The examples at a node in the tree are thus partitioned along the branches
and each child node gets its corresponding subset of examples. A popular algorithm
for generating decision trees is Quinlan’s ID3 [14], now commercially available.

ID3 starts by placing all the training examples at the root node of the tree.
An attribute is then chosen to partition the data. For each value of the chosen
attribute, a branch is created and the corresponding subset of examples that have the
attribute value specified by the branch are moved to the newly created child node.
The algorithm is then applied recursively to each child node until either all examples
at a node are of one class, or all the examples at that node have the same values for
all the attributes. An example decision tree generated by ID3 for the sample data set
given in Table 1 is shown in Figure 1.

Every leaf in the decision tree represents a classification rule. The path from the
root of the tree to a leaf determines the conditions of the corresponding rule. The
class at the leaf represents the rule’s action.

Note that the critical decision in such a top-down decision tree generation al-
gorithm is the choice of attribute at a node. The attribute selection is based on
minimizing an information entropy measure applied to the examples at a node. The
measure favors attributes that result in partitioning the data into subsets that have
low class entropy. A subset of data has low class entropy when the majority of ex-
amples in it belong to a single class. The algorithm basically chooses the attribute
that provides the locally maximum degree of discrimination between classes. Let us
examine this attribute selection method more carefully.
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Figure 1: The Decision Tree Generated by ID3.

Let A be a set of m attributes {A;, As,...,An}, let C be a set of k classes
{C1,C4,...,Ck}, and let S be a set of examples at some node. The set of possible
values for an attribute A; € A is referred to as Range(A;). Each example in S is an
(m + 1)-tuple of the form: (V4,V4,...Vy;Ck), where V; € Range(Ai),i = 1,...,m,
and Cj € C is the class of the example. Define Psc;, the probability of occurence
of class C; € C in a set S of examples, to be the proportion of examples in S that

are in class C;: Psg; = Heeslc’“;’(e)=cj H The first notion that needs to be defined
is a measure of class uncertainty in a set S of examples. This is achieved by using
an uncertainty or information entropy measure: The class information entropy in the
set S of examples is defined to be:

k
Ent(S) = — Y Psc; logy(Ps,c;)-
-

Note that Ent(S) is minimum when all examples in S are in one class. It is maximum
when all k classes are equally likely in S and its maximum value then is log,(k). Thus,
0 < Ent(S) < log,(k). When the entropy is minimum, there is only one class in the
set S, hence one’s uncertainty regarding the class of an example from S is minimum.
On the other hand, if all classes in S are equally likely, it is most difficult to correctly
“guess” the class of an example from S, whence, uncertainty is maximum.

ID3 measures the “goodness” of a partition on S by the average class entropy of
its component blocks. It favours a partition of S that results in subsets in which the
examples are distributed “less randomly” over the possible classes, i.e., subsets for
which the class uncertainty is small. To choose the attribute that would best achieve
this, for each attribute A; that takes more than one value for the examples in S,
ID3 partitions S into the sets S;; consisting of all examples in S having value V; for
attribute A;: S;; = {e € S|A; = V; for e}. The weighted sum of of the individual
class entropies of the subsets in the partition on S induced by the attribute A; is
referred to as the information entropy of attribute A; with respect to the set S:

R
E(A;, S) = E -ll—Sjl—lEnt(S.‘j) (1)
Vj€Range(A;)
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Hence, the information gain of attribute A; is defined to be the decrease in entropy
due to the partition induced by A;:

Gain(A;, S) = Ent(S) — E(A;, S). 2)

It is easy to show that 0 < Gain(A;, S) < log,(k).

For further partitioning of a node S in the tree, the ID3 algorithm selects the
attribute A; for which the information gain is maximized. Note that for any given
S, the value of Ent(S) is constant. Thus, ID3 selects the attribute that induces the
partition having the least average class information entropy.

One problem with the information entropy minimization heuristic introduced
above is that the formula of Equation 2 is biased in favour of attributes with a
larger number of values[14]. A new measure to compensate for this bias is intro-
duced. For an attribute A; € A, and a set S of examples partitioned into the subsets
S;; consisting of all examples in S that have value V; for the attribute A;,

|53 (I&‘jl)
IV(A;, S) = - —log, | —= ] -
v,-enge(A.-) EaNE

IV (A;, S) measures the degree of randomness of the distribution of the examples in
S over the values of A;. Note that it does not take into account what the classes of
these examples are. The gain formula of equation 2 is modified to be the Gain Ratio:

Ent(S) — E(A;, S) _ Gain(4A;, S)
IV(A;, S) - IV(A,S8)

GainR(A;, S) =

Although this correction has its problems, especially when I'V is very small, it seems
to work well in ID3 on the average. From our experiments, ID3 generally produced
better trees with the IV measure than without. We refer to this version of ID3 as
ID3-1IV.

2.2 Problems with the ID3 Approach

ID3 is essentially employing a heuristic, hill-climbing, non-backtracking search through
the space of possible decision trees. Thus, weaknesses in the ID3 algorithm may cause
it to “miss” better decision trees for the same data.

We discuss what we precisely mean by “better” trees in [5]. For the purposes of
this paper, we simply say that one decision tree is better than another decision tree
for the same training data set, if the former has a smaller number of leaves. The other
important performance measure is the error rate of the tree on classifying examples
outside the training set. For other performance measures used see (3, 5, 8]. This
section addresses some of the problems inherent in the ID3 approach that cause it to
generate overspecialized decision trees.



Perhaps the most pronounced of the problems is the irrelevant values problem.
When ID3 chooses an attribute for branching out of a node, it creates a branch
for each attribute value that appears in the examples. Some of the values of that
attribute may be relevant to the classification, yet the rest may not be. The subtrees
generated by such irrelevant values will result in overspecialized classification rules—
rules that check for unnecessary or irrelevant preconditions. Consider the following
example. Assume we are in a world where we are trying to classify objects into
the classes nutritious, useful, poisonous, dreadful,... Suppose one of the attributes is
colour. Assuming that an object whose colour is either blue or red may, under certain
other conditions, be poisonous. Suppose that colour is not relevant to any other
classification; testing on the individual values of the other colours { green, yellow,
...} does not make any sense. The only relevant information that the colour green
contains is the fact that the colour is not blue or red. If ID3 used colour for branching,
however, some rules for classifying an object into the class nutritious may actually
test for the irrelevant fact of whether an object’s colour is, say, yellow.

The problem of irrelevant values also leads to the problem of reduced training
data. Since the data are unnecessarily partitioned along the irrelevant values of an
attribute, each of the subtrees generated under an irrelevant branch will be based
on a subset of the training data that was unnecessarily reduced. Consequently, the
quality of subsequent choices of attributes made in each subtree are likely to be of a
lower quality, leading to an overall worse tree. The problem reduced training data is
an important problem in decision tree generation, in general.

Another problem related to the problem of irrelevant values is the problem of
missing branches. Missing branches essentially represent a reduction in the induc-
tive capacity of the tree. They are due to the fact that some of the reduced subsets at
the non-leaf nodes do not necessarily contain examples of every possible value of the
branching attribute. The following example illustrates this problem: Consider the
ID3 tree of Figure 1 generated for the data set of Table 1. Assume it is the case that
values high and normal for attribute selectivity do not have any particular relevance
to the classes, however, the value low is predictive of the class: low flowrate. Consider
two possible unclassified examples which are to be classified by the tree of Figure 1.

e : (Selectivity = low) & (A line width = low)
e’ : (Selectivity = normal) & (A line width = low)

Both e and €’ have combinations of attribute values that did not appear in the training
set. However, the tree readily classifies e as an example of low flow rate . €’ fails to
be classified by the tree because the subtree under the normal selectivity branch has
no branch for low Aline width.

In summary, the irrelevant attribute values cause the occurence of other serious
problems in ID3-generated tree. The final effect is that these problems collectively
result in overspecialized trees. If our goal is to find a classifier that is as general as
possible, then these problems should be avoided whenever possible.



2.3 The GID3 Algorithm

To avoid some of the problems described above, we developed the Generalized ID3
(GID3) algorithm. We generalized the ID3 algorithm so that it does not necessarily
branch on each value of the chosen attribute. GID3 can branch on arbitrary individual
values of an attribute and “lump” the rest of the values in a single default branch.
Unlike the other branches of the tree which represent a single value, the default branch
represents a subset of values of an attribute. Unnecessary subdivision of the data may
thus be reduced.

The tendency of GID3 to branch on all or some of the values of an attribute is
controlled by a user-specified parameter, TL. For a set S of examples, GID3 first
evaluates each attribute value pair separately. Suppose an attribute A; € A has
values in its range: Range(A;) = {V4,...,V,}. Then an attribute value pair, (4;, V)
for V; € Range(A;), partitions the set S into S4,—v;, the subset of examples in S that
have A; = Vj, and S AV the remaining examples in S. We can therefore evaluate
the entropy of the partition induced by the pair (A;, V;) as we did for an attribute:

-
Ent(Sa=v;) + |T—:;|V’—|Ent(SA,.¢vj) (3)

|Sai=v;

E((A,',Vj),S)= lsl

Thus, for each attribute-value pair we can define a “temporary” attribute that takes
on the values { True, False } for examples in S. We can thus find the “best” attribute-
value pair, the pair having the minimum entropy or maximum gain:

Gain((A;, V;), ) = Ent(S) — E((A:, V;), 5) (4)

We multiply the best gain by the tolerance level (TL) parameter to get a threshold
gain. All pairs whose gain is at least as high as this threshold gain are considered
relevant, otherwise they are not. Thus, only a subset of the values of any given
attribute may be considered relevant.

For each attribute, this evaluation allows us to define a corresponding new at-
tribute whose values are a subset of the original attribute values. We refer to the
new attribute AP; that has a subset of the values of A; as a phantom attribute. The
term phantom refers to the fact that it is defined only at the evaluation stage. Once
an attribute is chosen for branching, the attribute A; is restored to its original state.
The algorithm for deciding which of the values of A; are relevant is given below:

Begin Algorithm: GID3 Phantomization

Inputs: TL: user-determined parameter in range [0, 1].
S: a set of training examples.
A: a set of discrete attributes defined over S.



1. For each attribute-value pair (A;,V;) appearing in the examples’ in S, create
a binary-valued “temporary attribute” (A; = V;) which takes the value TRUE
for examples that have value V; for the attribute A;, and the value FALSE for
all other examples in S.

2. For each binary-valued temporary attribute (A; = V;) defined in step 1, E((A;
Vi), S) as defined in equation 4 is computed. Note that Range({A; = V;))
{TRUE,FALSE}.

3. Let MAX-Gain be the maximum of the values computed in step 2 above.

4. Let Threshold-G = TL x MAX-Gain.

5. Construct a set of phantom attributes, AP, as follows:

(a) AP « 0.
(b) For each attribute A; € A, for which more than one value appears in the
examples in S, Do
i. Default « 0; R « 0.
ii. For each temporary attribute (A; = V) defined in step 1 Do
IF Gain({A; =V;),S) > Threshold-G
THEN R «— RU{V;}
ELSE Default «— Default U{V;}
iii. IF R # (0 THEN AP « APU {AP;}
where AP; is the phantom attribute corresponding to A;,
and Range(AP;) = RU { Default }.

6. Conduct the ID3-IV algorithm to choose an attribute out of the set of phantom
attributes AP constructed in 5.

End Algorithm.

In order to avoid branching on irrelevant values of the attribute, only the values
that appear to be relevant, according to the information measure, may potentially
be branched on. All other values are lumped together in one default value for the
attribute. The tolerance level (TL) is user determined. TL specifies the degree of
tolerance for deviation of the information gain of an attribute-value pair from the
maximal gain value over all pairs (see algorithm for the definitions of TL and the
set of phantom attributes AP.) Attribute values that fall outside this tolerance range
are treated as a single “default” value. Note that if all values of an attribute fall
outside the tolerance range, no corresponding phantom attribute is constructed. Thus
|AP| < |A|. Furthermore, |Range(AP;)| < |Range(A;)| for all AP; € AP.

Setting TL= 0 results in behaviour that exactly matches that of ID3 since a pair’s
gain is allowed to be as low as 0% of the best gain; thus all pairs pass the filtering

1Values V; appearing on the path from the root to the node representing S are excluded from
consideration.
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Figure 2: The Decision Tree Generated by GID3.

stage. The other extreme occurs when TL= 1.0, where only the attribute-value pairs
whose gain measure ezactly matches the best gain may potentially be branched on;
the rest are grouped together in a “default” branch. In most cases, this setting is
expected to result in a binary decision tree—branching on one value with the rest
of the values on the default branch. As TL varies from 0.0 to 1.0, the algorithm
generates different trees. For a given set of data, we claim the existence of a setting
for TL that results in the generation of a “better” decision tree than that of ID3.

The issue of determining the proper setting of TL for a given set of data set
is beyond the scope of this presentation. Our initial motivation for developing the
GID3 algorithm was to empirically verify our hypothesis that for some TL setting,
GID3 will outperform ID3. We have experimentally verified that, indeed, there is
always a TL setting which allows GID3 to outperform ID3 [3, 6, 8]. We have since
formulated a new algorithm, GID3*, which does not depend on the user-specified
parameter TL [6]. Extensive empirical tests, over many synthetic and industrial data
sets from several domains, have demonstrated that GID3* outperforms GID3 for any
of the TL settings tested. A description of GID3* is beyond the scope of this paper.
Furthermore, the applications described in this paper were initially performed using
GID3 with TL set by the user.

The algorithm described above is obviously designed to avoid the problem of
irrelevant values. As a side effect, the procedure will also generate trees that are less
likely to suffer from missing branches as shown in the following example. Figure 2
shows the tree that GID3 would generate for the data set of Table 1. Recall that the
ID3 tree for this data set (shown in Figure 1) suffered from the problem of missing
branches as illustrated by the example ¢’. Note that both examples e and e’ above
are now classifiable by the GID3 tree, indicating a higher inductive power for the tree
generated by the new approach.

Finally, we have not discussed how continuous-valued attributes are handled in
GID3. A continuous-valued attribute is discretized by quantizing its range into inter-
vals. The algorithm for discretizing the range into two intervals is described in detail
in [7]. This is done by selecting a value in the range of the attribute and cutting
the range in two at that point. We have generalized the algorithm so that multiple
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intervals can be obtained rather than just two. This enables GID3 and GID3* to
discover even better decision trees. For details, the reader is referred to [6, 8]. A
new discretization is derived for each node depending on the data set at that node.
Once a continuous-valued attribute has been discretized, it is subsequently treated
as a discrete attribute by the learning algorithm. Hence, only a subset of the derived
intervals may be selected for branching.

We now turn our attention to the application of GID3 to problems in the domain
of semiconductor manufacturing. Interested readers are referred to [8, 3] for detailed
accounts of the ID3 and GID3 algorithms, the attribute selection criterion, the weak-
nesses of the ID3 approach, and various performance measures to evaluate the quality
of the resulting trees.

2.4 Applications of GID3 in Semiconductor Manufacturing

In this section we discuss several applications of the GID3 algorithm to semiconductor
manufacturing domains. Most of these domains involve the reactive ion etching (RIE)
process. The RIE process is a wafer etching process that promises increased precision
and higher device density. It has been targeted for automation by the Semiconductor
Research Corporation (SRC), a consortium of major U.S. companies in semiconduc-
tor manufacturing. One of the steps necessary for automation is the development of
expert systems that determine process parameter settings based on given output con-
straints. The problem is that the process is not well-understood and no satisfactory
methods for determining proper control settings exist.

To illustrate the types of industrial tasks to which GID3 can be applied, we de-
scribe application tasks from three categories: RIE process diagnosis, RIE process
optimization, and an emitter piloting application.

2.4.1 Process Diagnosis and Optimization

The goal of process diagnosis is to derive rules for diagnosing faults by deciding
which process parameters are not correctly set. We mention two process diagnosis
applications. The first project’s goal is to acquire a set of RIE process diagnostic
rules from a collection of production log data that contain fault inspection results by
process engineers where the specified pattern was not etched correctly in the metal
on a wafer. We discuss this application in detail when we discuss an extension of
GID3 to make it more robust in Section 4.

The second project was aimed at identifying relationships between RIE process
problems, such as reduction in yield, and corresponding process parameters including
the flow rate of each gas component and the chamber pressure for different etching
steps. This data set was derived by regression analysis which statistically identifies
the geometric patterns such as length, corners and gaps responsible for the yield loss.
Classes consisted of dominating defect patterns. The details of this project with
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Westinghouse and the National Bureau od Standards are discussed in [11]. The rules
derived by GID3 were used to analyze and understand the process behavior.

In the process optimization category, the project targeted deriving rules for dealing
with situations where the operating point drifts away from the optimal operating
point in the parameter space. We discuss this application in detail in Section 5 in
the context of combining the GID3 approach with the response surface methodology
(RSM) for process modelling.

2.4.2 An Emitter Piloting Application

Finally, we briefly discuss our effort on a project aimed at facilitating the knowledge
acquisition effort for the development of an emitter piloting advisory expert system
at Harris Corporation. GID3 has been applied successfully to acquire knowledge for
minimizing steps in emitter piloting dispositions. Emitter piloting is a process of tun-
ing integrated circuits printed in wafer so that device specification can be satisfied.
This task is typically carried out by a human operator. The initial cycle time is deter-
mined by experience and cycle time adjustment is then guided by the measurement
of two device parameters. If the values of the two parameters fall in their respective
desired ranges, the cycle time is accepted for batch tuning and is called the “shooting
time”. Otherwise, it is either increased or decreased to bring parameter values within
desirable ranges. The number of steps needed before success in such a process is
greatly affected by operator experience. Such experience is very valuable but is very
difficult to encode in rules. The purpose of the project was to collect all sequences of
trials conducted and to use the machine learning approach to attempt to extract the
knowledge underlying the actions of human operators. See [16] for further details of
this domain.

The raw data used in knowledge acquisition is composed of numerous experiment
data logs, each of which consists of sequences of cycle time adjustments targeting
one shooting time. For every trial in each sequence, the cycle time used and two
parameter measurement values were recorded. GID3 was used to learn rules for
jumping to a shooting time from an arbitrary cycle time by letting each data point
be the condition under which certain adjustments can be made to achieve a certain
shooting time. The difference between the current cycle time and the actual shooting
time for each example was taken to be the predetermined class. The rules induced
by GID3 were evaluated by an expert and were deemed satisfactory. In this project
GID3 was used as a knowledge acquisition tool to gather rules for incorporation into
an expert system developed by Harris Semiconductor.

3 Dealing with Industrial Data Problems

For the rest of this chapter, we focus on two special problems encountered in industrial
applications and the solutions we devised to combat them. The problems are:
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Figure 3: Two Decision Trees Representing the Two Rules.

Noisy Data: attribute values may be erroneous due to human recording errors, im-
perfect sensor repeatabilty, or defects in process equipment or sensors.

Limited Training Data: the training data may be small in size and conducting
more experiments may be too costly.

Along with each presentation of the extension to GID3 developed to deal with the
respective problems, we present a detailed account of a related application in RIE.

The extension developed to deal with noisy data is also capable of surmounting
some of the limitations imposed by a decision tree approach to the learning problem.
To illustrate this, consider the following example: Assume that a set of examples can
be classified by the following two rules:

If (A = a) Then C1 If (B =b) then C2

where A and B are attributes and C1 and C2 are classes. Although both rules have
only one condition, any equivalent decision tree for this set of rules will necessarily
introduce irrelevant conditions. Figure 3 shows two possible decision trees that can
represent these two rules. The rules that we can extract from the first decision tree,
labeled Rulel and Rule2, and the two extracted from the second tree, labeled Rule3
and Rule4, are given below:

Rulel: If (A = a) Then C1 Rule3: If (B = b) Then C2
Rule2: If (A # a) and (B = b) Then C2 Ruled: If (B # b) and (A = a) Then C1

Obviously, the condition (A # a) in Rule2 and the condition (B # b) in Rule4 are
irrelevant to the classification. However, their presence is mandated by the fact that
the set of rules must come from a single decision tree.

By overcoming the single tree representation restriction, one may derive more gen-
eral and more compact rules. We shall show how this is attained, without sacrificing
the efficiency afforded by the decision tree based approach, in the next section.
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4 Dealing with Noisy Data

Empirical learning algorithms are typically sensitive to the presence of noise because
they rely solely on data to discover rules. Typically, they are not intended to have
access to special domain knowledge to guide their decisions. Noise in a training
data set may cause irrelevant rule conditions to be selected. The solution we devised
combats noise in two ways: (1) statistical evaluation (pruning) to identify and remove
irrelevant conditions from rules, and (2) random sampling of multiple training sets and
selection of statistically significant rules from the trees generated for these training
sets.

As described in previous sections, GID3 and GID3* can efficiently induce classi-
fication rules from a set of data. This efficiency is mainly due to the decision tree
representation and the powerful hill-climbing heuristic. Because of its heuristic na-
ture and its non-backtracking search method, however, GID3 cannot avoid selecting
irrelevant attributes during decision tree generation. This problem becomes more
serious when data sets containing noise are used as training data sets for GID3.

The sources contributing to the above problem of the GID3 approach are iden-
tified to be (1) its persistence in achieving a complete and perfect classification (if
possible) while employing a simple hill-climbing hueristic, and (2) its decision tree
representation of classification knowledge. It is not surprising to see that the very
features of GID3 that make it efficient also cause problems.

To obtain better decision trees, two approaches are possible. The first approach
is to improve the decision tree generation algorithm, while the second is to apply a
robust statistical testing method to iteratively evaluate and prune the rules that are
derived from decision trees. The first approach was described in earlier sections and
consists of developing the GID3 and GID3* algorithms for generating better decision
trees. In this section, we focus on the second approach which is attractive because it
is independent of the way in which rules are generated. The statistical testing method
used in this approach is Fisher’s Exact Test [10]. This approach is implemented in a
software package, RIST (Rule Induction and Statistical Testing).

RIST extends GID3 by introducing three important methods, (1) a control strat-
egy that calls upon GID3 to iteratively induce decision trees from randomly sampled
subsets of a training data set, (2) statistical criteria for testing and pruning conditions
of rules extracted from decision trees, and (3) a heuristic method for selecting a min-
imal set of rules from a pool of statistically-good rules satisfying certain constraints.

By introducing the second method, RIST is able to derive a set of good rules
in the sense that all conditions of these rules are known to be statistically relevant
to the rules’ classifications. While the second method tends to reduce the coverage
of a set of rules because of possible elimination of some rules, the first method can
enlarge the coverage and make it possible to derive a diverse set of rules that might
not be available from any single decision tree. The first method can be perceived as a
trade-off of two extreme alternatives: generating a set of rules from a single decision
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Figure 4: Data Flow Diagram of the RIST System.

tree, or exhaustively searching for all possible rules. By combining rules derived from
multiple decision trees, however, it is possible that redundant rules are generated.
The third method is therefore introduced to search for a compact set of rules without
compromising rule classification. Figure 4 illustrates this description of the RIST
program. In the following sections, we cover the algorithm in more detail.

4.1 The RIST program

We briefly describe the nine components of RIST. Inter face is used for communica-
tion between the user and various parts of the program. It provides a set of menus
to enable the user to easily inquire, access, and manipulate the information stored
and processed by the program, including examples, decision trees and rules. ExGen
samples random subsets of examples out of a training data set. T'reeGen is a de-
cision tree induction program (we use GID3.) RuleGen extracts rules from a given
decision tree. For each rule, it detects and removes redundant conditions. RuleSpool
merges rules that are derived from different sources such as decision trees or users.
RuleTestPrune tests and prunes rule conditions or rules based on a statistical mea-
sure. Details of this component will be given later in this section. RuleSel enables the
user to examine or change a set of rules by posing queries on rule conditions, classes
or test measures. RuleEdit lets the user manipulate the existing rules or create new
rules manually. These rules can then be mixed with the rules already in RuleSpool.
RuleMinSet can be called to produce a minimal set of rules which satisfy certain
constraints.

While in GID3 the focus of attention is how to derive a (single) decision tree to
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best encapsulate the classification knowledge, in RIST, a set of rules constitutes the
end product. These rules can come from different decision trees and can even come
from users. The rationale behind this shift of emphasis is that rules are more modular
and are therefore more managable and easy to extend. In addition, a set of rules can
potentially provide a greater coverage of any task domain than a single decision tree
can.

As shown in Figure 4, RIST starts with a set of training examples drawn from a
problem domain. These examples are then randomly sampled by EzGen to provide
many training data sets. Decision trees are generated, sequentially or in parallel, by
TreeGen, and the trees are then converted into a set of rules by RuleGen and merged
into a pool of rules (with redundancy removed) by RuleSpool. The rules in the pool
are tested and pruned by RuleT est Prune according to a statistical measure. Finally,
the user can participate by querying rules, manipulating rules, re-testing rules with
progressively-tighter test criteria or constraints, and/or selecting a minimal set of
rules satisfying certain constraints. These user options are supported by RuleSel,
RuleEdit, RuleT est Prune, and RuleSetMin, respectively.

4.1.1 Rule Testing and Pruning

As its name suggests, RuleT'estPrune performs a test on a set of rules, and based
on the test results, it prunes rule conditions or rules themselves according to users’
requirements and constraints. The core of this RIST component is the Fisher’s exact
test. This test is used to determine the statistical confidence with which we can reject
the hypothesis that a rule condition is irrelevant to the rule’s class for any example
that satisfies all other preconditions of the rule. It is important to note that, it is
possible for a condition to actually be relevant while a belief of its relevance is not
strongly supported by the test. The approach taken by RIST is conservative, namely,
it judges a rule precondition to be irrelevant if the test does not strongly support the
rejection of the hypothesis that it is irrelevant. The rule conditions that are judged
to be irrelevant are pruned. This sometimes leads to the removal of the entire rule.

In addition to testing every individual precondition of a rule, RuleTestPrune also
tests the whole conjunctive precondition as one condition. Finally, it tests the rules
against a constraint to see whether the rule, with some of its preconditions possibly
pruned, can classify the test data accurately. This constraint is implemented as a
threshold on the rule hit ratio, a ratio of the number of correctly classified instances
to the total number of instances classified by the rule.

RuleTestPrune evaluates the conditions and rules using the procedure CondT est Prune.

procedure: CondTestPrune(R,T Set,T.)

R: a rule to be evaluated (input, output)
T'Set: a set of testing data (input)
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T,: a threshold value for determining whether a precondition is acceptable (input)

1. If the precondition set of R is empty, then R «— NIL; RETURN;
2. For each precondition prec of R,

(a) Get a subset of examples, E, of T'Set such that E contains only examples
satisfying all preconditions of R except for prec, the one that is being
evaluated.

(b) Calculate the entries of the following table:

$1 82 A
83 84 N-A
r | N—r N
where
sy = number of examples in F satisfying prec and classified correctly
s; = number of examples in E not satisfying prec but classified correctly
s3 = number of examples in E satisfying prec and misclassified
s4 = number of examples in E not satisfying prec and misclassified
r = $;+ s3 = number of examples satisfying prec
A = s; + s; = number of examples classified correctly
N = s; 4 s3 + 83 + s4= number of examples in £

(c) Calculate the statistical significance level s,...2at which we can reject the
hypothesis that the precondition prec is irrelevant to the rule classification
of any example in the test set assuming that all other preconditions are
satisfied by that example.

ef(M)(N‘_M)/(N)
PR 7 R e

3. Sprec +— {prec|sprec > T.}. Prune a precondition of R that is in Spre and whose
tree level is the highest among all elements in Sye.. If no precondition is pruned,
then return. Otherwise, update the set of preconditions of R. Go to step 1.

As illustrated in the above procedure, C'ondT est Prune evaluates one precondition
at a time. For each precondition, CondTestPrune measures its statistical confidence

2(1 — sprec) * 100% is the confidence level at which one can reject the hypothesis that prec is
irrelevant to the rule’s class, assuming all other preconditions are satisfied.
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on the relevance of the condition to the rule classification of any example assuming the
example already satisfies all other conditions. After all preconditions are evaluated,
a precondition is removed from the rule precondition set if the test value of that
precondition is the lowest and the precondition lies highest in the tree hierarchy
among the ones having the same evaluation. The heuristic decision of removing the
one highest in the tree is based on empirical experience. Once a precondition is
removed, the whole process of testing and pruning is iterated on the remaining set of
preconditions. The procedure terminates when either no precondition is removed or
all preconditions have been removed.

The procedure RuleTestPrune first invokes CondTest Prune to test and prune
each of its preconditions. If at least one precondition survives after CondT'est Prune
returns, then it forms a new rule by combining all the preconditions of the current
rule into a single conjunctive precondition. It then invokes CondT'est Prune again
to process the rule with the new rule precondition. If the rule survives this test,
then RuleTestPrune checks its hit ratio, an estimation of the rule’s accuracy in future
classification.

4.2 Rule Set Testing and Minimal Rule Set

In the previous section, we described how RIST tests and prunes a rule with a con-
junctive precondition. Since the rules are derived from decision trees, it is typical
that each rule’s precondition is a conjunctive condition, and multiple rules may exist
for the same class. One can naturally view a set of rules predicting the same class as
a single rule with a disjunctive precondition. A practical question arises: can we get
a minimal subset of rules for a given class without loss of the classification coverage of
the original set? In this section, we provide procedures that give a heuristic solution
to this problem.

Procedure RuleSetMin finds the desired small subset of rules. In doing so, it calls
on procedure RuleSet Eval, which evaluates a set of rules that predict the same class.
RuleSet Eval uses two measures, namely, the rule set domain coverage and the rule
set hit ratio. The rule set hit ratio is the ratio of the number of correctly classified
instances to the total number of instances that are classified by at least one rule in
the set. The rule set domain coverage is the ratio of the number of instances that are
classified by at least one rule to the total number of instances of that class in the test
set. If an example satisfies all the preconditions of at least one rule in the set, it is
considered classified by the whole rule set. If an example is misclassified by at least
one rule in the set, it is considered misclassified by the whole rule set; although there
might exist another rule in the set that correctly classifies this example. Hence, the
call: RuleSetEval(SR, T Set,h,c)sets h to the rule set hit ratio and c to the rule set
domain coverage, for a set SR of rules that predict the same class and a set of test
data T'Set.

It is now desired to develop a procedure that derives, from a given rule set, a
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subset of rules that predict the same class so that this subset (1) has the same domain
coverage as the whole rule set, (2) has a hit ratio that is at least as good as that of
the whole rule set, and (3) has the minimal number of rules. A rule subset which
satisfies the first two conditions can be easily found. To satisfy the third condition,
however, is an NP-hard problem. With this in mind, we developed a simple procedure
which can find a subset of rules that satisfies the first two conditions and whose size
is at least a local minimum, meaning that no rule can be removed without sacrificing
either the domain coverage or the hit ratio of the rule subset.

procedure: RuleSetMin(SR,T Set,SRmin)

SR a set of rules predicting the same class C' (input)
TSet a set of testing data (input)

SRpmin a subset of rules that (1) has the same coverage as that of SR, (2) has a hit
ratio at least as good as that that of SR, and (3) has a size that is at least a
local minimum. (output)

Copy SR to SRuin-

call RuleSet Eval(S Rmin, T'Set, Hpin, Cmin)
worstg = NIL

For each rule, R, in SR,;», do

(a) call RuleSetEval(SRmin — {R}, T Set, h,c)
(b) if ¢ > Crnin and h > Hpin, then Hyin — h, worstg «— R.

5. if worstg = NIL then RETURN; else remove R from SR,,;, and goto step 2.

ol o

4.3 An application example of RIST

We now give an example of an application of RIST to a real-world problem. The
problem domain considered is RIE process diagnostics. The goal is to acquire a
set of symbolic diagnostic rules from a collection of production log data that contain
process fault inspection results. The data was obtained from Hughes Microelectronics
Center. Each data log contains about 60 data entries, including machine type, device
specification, material and resist thickness, plasma time, power, DC bias, chamber
pressure, gas flow, temperature, valve position and number of wafers. Since this is a
multi-stage (three stage) etch, each stage has its own set of measurements. A distinct
table slot is used for visual inspection after the etch. For this project, three types of
inspection results are commonplace, namely, normal, PR erosion, and sleeves.
Process fault diagnosis has been a regular demand on process engineers. Whenever
a fault is detected, its immediate cause needs to be identified and a decision is then
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Table 2: A Partial List of Data Logs for an RIE Process.

powerl | power2 | power3 | timel | time2 | time3 | wafer# | topology | ... | outcome
I e 1134 490 8.98 7.20 5.0 18 v erosion
895 1139 492 10.26 | 8.2 5.0 24 v erosion
833 854 442 74 6.0 b0 1 ' sleeves
835 818 491 9.7 7.76 5.0 5 v none
859 835 490 9.9 7.92 5.0 2 v none
867 886 466 9.9 7.9 5.0 7 v sleeves
847 871 473 9.8 7.8 5.0 8 v sleeves
776 833 500 8.6 6.9 5.0 8 v none
771 813 490 8.7 7.0 5.0 4 v none
847 825 491 9.20 7.36 5.0 13 v erosion
851 843 490 172 |43 5.0 6 v none
806 896 493 10.5 8.40 5.0 2 v none
844 822 493 9.16 7.33 5.0 14 v erosion
860 809 490 9.8 7.84 5.0 2 v none
867 825 452 9.7 7.76 5.0 2 v sleeves
878 819 454 24.1 14.4 5.0 1 t none
848 816 455 321.0 | 16.8 5. 9 t none
806 778 484 22.5 9.0 5.0 8 ¢ sleeves
881 795 467 2.7 13.6 5.0 i t none
772 868 490 8.7 7.0 5.0 7 v none
842 826 494 17.0 13.6 5.0 1 v none

made to correct the problem by adjusting process parameters directly or indirectly.
Determining such adjustments is a nontrivial task. Abstracting these daily routines
into rules that cover the task has been found to be difficult. Extracting general
rules that can be transferred across different processes and be used to guide further
reasoning to find physical laws governing the observed phenomena has been especially
difficult. For this project, the difficulty in diagnosing the faults is due to the large
number of process parameters, most of which vary greatly. These conditions naturally
make a domain appear promising as an application for GID3 or RIST type of machine
learning techniques.

Before RIST can be applied, the data slots of the log sheets were first screened
to remove attributes that are known to be of not relevance to process diagnosis. We
found that data can be grouped into two categories: one for process recipe parameters
and one for process parameters that are measured but not controlled. Since the
processes we dealt with used the same recipe, the recipe parameters cannot be used to
discriminate the process conditions that are responsible for the faults. Therefore, only
9 primitive data slots were chosen as process parameters used to determine causes of
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various process faults. They were etching power (transmitted power - reflected power),
etching time, number of wafers, device topology, and process outcome inspection
record. Etching time and etching power are further divided into three etching stages.
A subset of data is shown in Table 2.

Once the attributes and classes are determined, RIST can be used to induce rules.
For example, RIST may be invoked to generate ten decision trees. For the generation
of each decision tree, a randomly sampled training subset consisting of 60% of the
training data is selected for each tree. The entire data set will be used as the test data.
It is further specified that only rules whose class is “erosion” is of interest for this
run. The three thresholding values for rule testing are also given in the specification.
Example values for the condition test threshold, the rule test threshold, and the
rule hit ratio threshold are 0.05, 0.05, and 0.9, respectively. Notice that the first
two are upper bounds on acceptable statistical significance values (lower bounds on
acceptable statistical confidence) while the third is a lower bound on the acceptable
rule hit ratios. Given the above specification, RIST generated ten decision trees from
which 19 distinct rules of class “erosion” are derived. After the statistical and hit
ratio testing, however, only nine rules are accepted. The hit ratio and coverage for
this set of nine rules are identical and are equal to 0.9231.

Now, RIST finds the smallest subset of these rules that can achieve the same
coverage as that of the original rule set with no loss in performance with respect to
other criteria. This results in the selection of only four rules. The rule set hit ratio
for this set is 1.0 while the coverage is 0.9231.

To let readers get a better feeling of RIST’s approach to rule induction, testing,
and pruning, we give two examples below to show how RIST evaluates and prunes
rules derived from a decision tree for this problem domain. First, we show a rule and
its initial evaluation right after it is derived from a decision tree.

RULE9: <ETIME2 in [9.07, 9.45)> & <ETIME1 in [8.1, _)>
& <WAFER in [_, 11.5)> & <PW_2 in [_, 975.5)> ==> [class: Erosion]
<ETIME2 in [9.07, 9.45)> Test=0.001899 <WAFER in [_, 11.5)> Test=1.0
<ETIME1 in [8.1, _)> Test=1.0 <PW_2 in [_, 975.5)> Test=1.0
rule’s test= 0.017845, certainty= 1.000000
2 exs of class Covered, 11 exs of class Not Covered, O Misclassified.

Obviously, all but the first condition of this rule are irrelevant to the rule’s class.
These irrelevant conditions are therefore pruned, resulting in the following new com-
pact rule.

RULES: <ETIME2 in [9.07, 9.45)> ==> [class: Erosion]
<ETIME2 in [9.07, 9.45)> Test=0.017845
rule’s test= 0.017845, certainty= 1.000000
2 exs of class Covered, 11 exs of class Not Covered, O Misclassified.

In this case, although two conditions are pruned, the rule’s hit ratio is not affected
because these two conditions are completely redundant. In the second example, we
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study a different case in which a rule’s hit ratio is affected after its condition being
pruned. Again, we first give the rule’s original form as derived directly from a decision
tree.

RULE3: <PW_2 in [816.5, 828.5)> <WAFER in [11.5, _)> ==> [class: Erosion]

<PW_2 in [816.5, 828.5)> Test=0.254545 <WAFER in [11.5, _)> Test=0.000327
rule’s test= 0.000234, certainty= 1.000000

4 exs of class Covered, 9 exs of class Not Covered, O Misclassified.

As can be seen, the attribute PW_2 is not quite as relevant as the attribute
WAFER with respect to the rule classification “erosion”. After RIST’s rule pruning
with the given threshold, the first rule condition is then removed, giving the following
result:

RULE3: <WAFER in [11.5, _)> ==> [class: Erosion]
<WAFER in [11.5, _)> Test=0.000000
rule’s test= 0.000000, certainty= 0.750000
9 exs of class Covered, 4 exs of class Not Covered, 3 Misclassified.

This new rule’s precondition now satisfies the test threshold. The rule’s hit ratio,
however, is now too low to meet the requirement (0.9). This rule is therefore not
accepted.

5 Dealing with Limited Training Sets

The learning algorithms we discussed do not use any special domain knowledge about
the data during tree or rule generation. They rely on the availability of large training
samples to detect the presence of meaningful reliable patterns or correlations. In
some cases however, obtaining training examples may be an expensive process. In
this case, only a limited training set may be available.

5.1 Process Optimization

To achieve high yield, low defect density, RIE must operate at an optimal point in
the input parameter space. The problem, known as process optimization, is the most
important problem that a process engineer has to face.

The goal of process optimization is to find a set of input parameters, usually
referred to as recipe, such that the outputs can be optimized. The input parameters
in RIE usually include RF power applied to the electrodes, gas mixture, gas flow rate,
chamber pressure. The outputs are usually the measurements made after the wafers
are unloaded from the etching chamber. They include: etch rate, selectivity(the ratio
of etch rate of two different etch materials), edge profile, loss of critical dimension
(Delta CD) and uniformity. In most cases, we want to optimize several of these output
variables with the others as constraints. For example, one might want to maximize
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the etch rate and minimize the side wall loss under the condition that selectivity is
greater than a certain number.

The difficulty of the problem lies in getting an accurate physical model of the
complex process. Most models of RIE process are too ideal to be used in practice. The
process is complex because all the input parameters can interact with each other. In
addition, the optimization problem is multivariable, this means that several variables
should be optimized according to the process specification.

A popular way to solve the process optimization problem is to use Response
Surface Methodology(RSM) [4, 13]. RSM is a statistical method which regards the
input parameters of RIE as independent variables and output parameters as response
variables. For each response variable, multiple regression analysis is done to generate
a response surface. This is usually done by fitting a polynomial equation to a set
of independent variables. Optimization techniques are then used to find a point
that optimizes the response variables under the given constraints (see [1]). However,
RSM has its drawbacks. It is a static method in the following sense. Given a set of
experimental data, a set of response surfaces can be generated and a fixed optimal
point can be found. According to this optimal point, a recipe can be formulated.
One would have to rely on this recipe to have an optimal process. The problem is
that under the same recipe, the operating point might not be optimal because certain
hidden variables which were not considered in the design process may influence the
process later. In other words, the response surface may drift so that the operating
point may no longer be optimal. Obviously, what we need is a set of rules which
tell us where to move in the parameter space to achieve the optimal output under
the given constraints. This makes for a dynamic, rather than static, solution to the
optimization problem.

The above analysis led us to consider using machine learning technique for RIE
process optimization. Our objective was to generate a set of rules which would de-
termine the input parameters that need to be changed, and the direction in which
to change them, if the outputs are not optimal or do not satisfy the constraints. For
example, the rule “if Oxide selectivity is lower than normal, and CD (Critical Di-
mension) uniformity is higher than normal, then pressure is high, and total flow is
high” tells us that pressure and total flow should be decreased since selectivity and
uniformity are not optimal.

The following are some of the advantages of extracting symbolic rules from ex-
perimental data: 1. Knowledge is widely represented by rules in expert systems.
Applying knowledge-based approach to semiconductor automation and building ex-
pert systems are the primary reasons for acquiring RIE optimization knowledge. 2.
As mentioned above, rules give trends instead of an optimal point so that they are
more general and more dynamic. 3. Rules are more understandable than equations
and numbers. They indicate the qualitative behavior of the process. Thus, rules may
help process engineers understand the process and rules may also be used for training
new process personnel.
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A machine learning program, such as GID3, provides us with a tool to derive
qualitative, symbolic rules from data (as discussed in the previous sections and in
[12].) However, it was found that combining RSM with machine learning, rather than
applying machine learning alone, is more successful in deriving robust, meaningful
rules from experimental data. Following are two of the reasons why direct application
of GID3 to a set of data is not preferred: 1) To induce a decision tree, GID3 usually
requires a large set of data as input. However, we can only have a limited number
of experiments because an RIE experiment is expensive. Regression analysis enables
us to generate response surfaces. From the response surfaces, we can derive as many
samples as necessary for use as input to GID3. 2) GID3, as a classification algorithm,
is noise sensitive. RSM can filter out some of the influence of the noisy data.

In the next section, we present a procedure for deriving RIE process optimization
rules by using both RSM and GID3. In that section we also provide some results
derived from experimental data.

5.2 Procedure and Results

To derive a set of qualitative rules about a process from a set of experimental data, we
implemented the KARSM (Knowledge Acquisition from RSM) system. KARSM first
constructs response surfaces for the process and then generates random samples from
the response surfaces. Those samples are then classified according to the optimum
criteria and are fed into machine learning program to induce rules which provide
ranges for optimal operation and sub-optimal operations. Finally, after analyzing
these ranges and conditions, a set of rules about the trend for optimization is derived.
This procedure is schematically illustrated in the diagram of Figure 5. In what follows,
we describe the procedure of KARSM through a detailed example of applying KARSM
to a set of experimental data obtained from Hughes Microelectronics Center.

Our data is from experiments for reactive ion etching of poly-silicon gates. The
three independent variables are the three controllable process parameters. They are:
pressure, total flow rate and percentage of C'l; flow rate. The experiments are designed
using face-centered cube (FCC) design with center point replications. By replicating
center point six times, we have 20 trials for three variables and three levels. Measure-
ments are then performed on the etched wafers. Four response variables are used for
optimization, they are: Delta CD, CD uniformity, Oxide selectivity (Oxide etch rate
divided by poly-silicon etch rate), and Oxide uniformity.

The objective of the optimization is to minimize Delta CD under constraints. The
constraints can be formulated as:

Oxide selectivity > ¢; & CD uniformity < ¢, & Oxide uniformity < c3

Here, c;,c;, and c3 are known constants. First, multiple least square regression
analysis is applied to generate response surfaces for all the four response variables.
For response variable Delta CD, we use quadratic equation to fit the data. The
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Figure 5: A Dataflow Diagram of the KARSM System.

normalized equation with R? = 0.98 is as follows:

DeltaCD = 2045.8 — 7.8987p + 4.6933t f — 84.357pf + 0.0086p°

+0.50041pf% — 0.012333p - tf + 0.16239p - pf

where p, tf, and pf stand for pressure, total flow, and percentage Cl, flow respectively.

For the rest of the response variables, we use polynomials of degree three. We use
degree three because the quadratic equations do not give us good fittings, i.e., R? for
these equations are very low. Since there are only 20 trials, we use forward stepwise
regression analysis. The resulting equations are quite satisfactory:

OzSel

CdUnif

OzUnif

—250690 — 175.26p + 5490.2t f — 7.331tf% + 540.74pf — 3.1968p - tf
—208.01¢f - pf + 0.0012673p> — 6.5863pf> — 0.023512p - pf
+0.21271tf% - pf + 0.98478tf - pf% + 0.12781p-tf - pf (0.965)
319750 + 0.089362t f3 — 0.054928p - tf2 — 0.79226tf - pf

—0.92434 % p* pf? + 1.5004tf - pf? + 0.49059p-tf - pf (0.944)
2500700 — 15069p + 11.982p% — 3.0201t % — 3144.9pf

+507.46p - pf + 39.813pf2 — 0.30148p? - pf + 0.0061702p - t f*
+0.061437tf%- pf — 3.0468p - pf% — 0.062042p- tf - pf (0.974)

The numbers in the parentheses following the equations are the values of R?.

To derive qualitative description of the causal relation between the controllable
process variables and the response variables, we use GID3 to learn symbolic rules
from random samples on the response surfaces. A random sample on the response
surfaces is generated in the following way: For each independent variable, a random
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Table 3: Classified Random Samples for Training KARSM.

[ No. | pressure | total flow | percent Cly flow | class |

1 377 102 49 ab,L11
2 342 297 36 hLLh
3 491 241 34 ab,h,Lh
1 374 235 30 TLLh

5 419 289 37 ab,h,L]
6 319 253 38 m, L1
7 305 157 31 vLh,Lh
8 303 185 42 VL1l

value within the range of that variable is assigned. A tuple of all random values
is called a random input. Then, for each response surface above, we calculate the
response for the random input.

GID3 views a set of random samples on the response surfaces as a set of examples.
Naturally, three controllable parameters, pressure, total flow, and percentage of Cl,
flow are regarded as the attributes of the examples. Class of an example is assigned
in the following fashion. For each constraint variable, there is a normal region and
an abnormal region. For example, value of CD uniformity is in normal region if it
is less than or equal to ¢; and is in abnormal region otherwise. For the response
variable to be optimized, say, Delta CD, we discretize its value into different levels
such as very high, high, medium, low and very low. Therefore, for each random
sample, its responses are coded as a string with four segments, with each segment
representing the region of one response. For example, a string “vh,h,1,h” means: very
high Delta CD, high Oxide selectivity, low CD uniformity, and high Oxide uniformity.
Obviously, overall there are 40 possible classes, although samples from the response
surfaces may not exhaust all these 40 classes. Among these classes, only one class
is optimal: the class corresponding to the string “vl,h,1,1”. All other classes are sub-
optimal either because one or more constraints are not satisfied or because Delta CD
is not minimized. A subset of classified random samples is shown in Table 3.

By performing machine learning using GID3 on a set of examples in the form of
Table 3, we can derive a decision tree which corresponds to a set of rules. To obtain
a more robust set of rules, we use the RIST program which invokes GID3 repeatedly
to obtain many trees. A set of rules that pass the RIST statistical tests is considered
robust. Some of the rules in these set are given below:
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bl. If 319.5 < pressure 395 mTorr, &
296 < total low < 300 mTorr,
Then Oxide selectivity is lower than normal,
& CD uniformity is higher than normal.
b2. If 326.5 < pressure < 407 mTorr, &
total flow in { [283,284.5) , [296.5,300) },
Then Oxide selectivity is lower than normal,
& CD uniformity is higher than normal.

Notice that the rule (a) gives the conditions for optimal operation. The other two
rules give the conditions for sub-optimal operation. What we need is a set of rules
which point to the direction of change for optimal operation when the operation is
not optimal. This will actually reflect causes underlying sub-optimal operation.

To derive such rules, the conditions(path) of a rule with sub-optimal class are
compared to the conditions of the rule with optimal class. The differences are then
the changes one needs to make to bring a sub-optimal operation to the optimal one.
For instance, rules bl and b2 give the conditions for a sub-optimal class “Oxide selec-
tivity is lower than normal and CD uniformity is higher than normal”. By comparing
the conditions of these rules with those of rule a, we derive the following rule: if Oxide
selectivity is lower than normal and CD uniformity is higher than normal, to optimize
Delta CD with other responses within the constraints, both pressure and total flow
should be decreased. Below, we list four of the rules derived in this way:

a. If 300< pressure < 320.5 mTorr, &
170.5 < total flow < 185.5 sccm, &
38.5% < Cl, flow percent < 42.5%,

Then Oxide selectivity is normal,
CD uniformity is normal,
Oxide uniformity is normal, &
Delta CD is very low.

3. If Delta CD is higher than normal,
then pressure is high.

4. If Oxide selectivity lower than normal,
& CD uniformity higher than normal,
then pressure and total flow are high.

1. If Oxide uniformity is higher than normal,
then percentage of Cl flow is low.

2. If Oxide selectivity is lower than normal,
then total flow is high.

Now, the question is how “good” are these rules? Do they really reflect the
qualitative behavior of the process? We may not get a good answer to these questions
until these rules have been applied at the actual production lines for months and
optimal process has been maintained by the application of these rules. However, a
partial answer could be given if we compare these rules with the contour plots of the
response surfaces. Although, as is mentioned above, response surfaces may drift with
time, and the optimum on the response surfaces may not be the real optimum, the
relative shape of a response surface most probably will not change. This is because
the relative dependency of a response variable to independent variables is governed by
the causal relationship between the response variable and the controllable parameters.
Therefore, we believe that if correspondence can be found between a rule and the
contour plots of the response surfaces, the rule does reflect the qualitative behavior
of the process.

We also note that process engineers frequently derive “rules of thumb” of their
own by reading contour plots of a process. This is by no means simple and easy. It
can be very time consuming. In this respect, the above procedure of deriving rules
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Figure 6: Contour Plots from the Generated Response Surfaces.

by machine learning as well as RSM from experimental data can be thought of as a

mechanization of extracting information from response surfaces.

The contour plots in Figure 6 show the correspondence between the response
surface for oxide uniformity and rule 1. The constraint on Oxide uniformity is that it
must be less than 50. Obviously, the shaded regions in plots (a) and (c) correspond
to “Oxide uniformity is higher than normal”. From both (a) and (c), it is easy to see
that total flow and pressure do not affect Oxide uniformity too much. This is again
verified by (b) where Oxide uniformity is normal in all region. From (a) and (c), it
is clear that the lower the percentage flow of Clz, the higher the Oxide uniformity,

which is exactly what rule 1 says.
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6 Concluding Remarks

We have introduced the general problem of extracting rules from data for the purpose
of automating the knowledge acquisition process. We described the GID3 algorithm
for inducing decision trees and its use in automating knowledge acquisition in several
application domains. Given a training set of data, the algorithm produces a decision
tree for predicting the outcome of future experiments under various, more general
conditions. The tree may then be translated into a set of rules for use in expert
systems. We also introduced two extensions of GID3 to deal with noise and limited
training set availability and detailed their application to RIE related domains.

We have used GID3 and its extensions to extract knowledge from data in several
application domains. In each case, the decision trees obtained, or the English version
of the generated rules, were sent to the engineer who supervises the experiments and
provides the data. The derived rules were judged to be consistent with the data
and conformant with the engineers’ expectations. A derived model, or a discovered
pattern, that is consistent with a process engineer’s expectation is of great value in
two ways: (1) it provides a previously unavailable mechanical means for classifying
events or relating faults to parameters; and (2) it gives the process engineer further
insight into the process by making explicit a pattern that was previously implicit as
part of the engineer’s “intuition” about the process.

We believe that machine learning techniques have an important role to play in
the automation and improvement of manufacturing techniques as well as many other
diagnostic tasks. A machine learning approach avoids the ubiquitous “knowledge ac-
quisition bottleneck” by minimizing the required interaction with domain experts and
focussing on a resource that is much easier to obtain: experimental data. A further
advantage of using an induction systems such as GID3, GID3*, RIST and KARSM is
that at least some portions of the tedious and difficult knowledge acquisition process
can be made efficient, accurate, and most importantly, can be automated.
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Figure 6: Contour Plots from the Generated Response Surfaces.

by machine learning as well as RSM from experimental data can be thought of as a
mechanization of extracting information from response surfaces.

The contour plots in Figure 6 show the correspondence between the response
surface for oxide uniformity and rule 1. The constraint on Oxide uniformity is that it
must be less than 50. Obviously, the shaded regions in plots (a) and (c) correspond
to “Oxide uniformity is higher than normal”. From both (a) and (c), it is easy to see
that total flow and pressure do not affect Oxide uniformity too much. This is again
verified by (b) where Oxide uniformity is normal in all region. From (a) and (c), it
is clear that the lower the percentage flow of Cly, the higher the Oxide uniformity,
which is exactly what rule 1 says.
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