A Machine Learning Approach
to Diagnosis and Control with
Applications in Semiconductor Manufacturing

Keki B. Irani Jie Cheng Usama M. Fayyad Zhaogang Qian'

Artificial Intelligence Laboratory
Electrical Engineering and Computer Science Department
The University of Michigan
Ann Arbor, MI 48109-2122

1 Introduction and Motivation

In this chapter, we focus on a machine learning approach to the problem of automating
the diagnosis and process control in semiconductor manufacturing. The reactive
ion etching (RIE) has been used as a primary vehicle of application. Automation
promises cost-effectiveness, reliability, predictability, and accuracy. So far, only fixed
simple tasks in manufacturing have been automated. Automation of more complex
tasks, currently requiring intelligent decision making or problem solving on the part
of humans, is a much more difficult task.

One of the goals of Artificial Intelligence (AI) research is to provide mechanisms for
emulating human decision-making and problem solving capabilities, using computer
programs. The first Al attempts at such systems appeared as part of the technology
known as “expert systems”. Expert systems are intended to provide the means of
encoding human knowledge about a specific task in terms of situation-action rules.
The idea is that if such systems are endowed with sufficient knowledge of the task
at hand, they may be able to emulate human expert behavior in most, if not all,
situations that arise during task execution.

Serious difficulties arose that hindered the development of successful expert sys-
tem applications. The first such difficulty is known as the “knowledge acquisition
bottleneck” [9]. Human experts find it difficult to express their knowledge, or explain
their actions, in terms of concise situation-action rules. If pressed to do so, they
typically produce rules that are incorrect, or that have many exceptions. The articu-
lation of specific intuitive knowledge into deterministic rules is a difficult, sometimes
unrealistic, problem for human experts. Interviewing domain experts to extract such
knowledge is also an expensive process demanding time from experts and knowledge
engineers.

A second problem arises in a different situation: What if a task is not well-
understood, even by the experts in that area? An example of this situation is man-

of The author is currently with Artificial Intelligence Services, Electronic Data Systems, 5555
New King Street, Troy, MI 48007-1079.

ifested in our experience with the automation of the RIE process in semiconductor
manufacturing. In such domains, abundant data are available from the experiments
conducted, or items produced. However, models that relate output variables to con-
trolling (input) variables are not available. Experts strongly rely on familiarity with
the data and on “intuitive” knowledge of such a domain. How would one go about
constructing an expert system for such a domain?

The machine learning approach to circumventing the aforementioned hurdles calls
for extracting classification rules from data directly. Rather than require that a do-
main expert provide domain knowledge, the learning algorithm attempts to discover,
or induce, rules that emulate expert decisions in different circumstances by observing
examples of expert-executed tasks.

In addition to the motivations listed above, two other reasons exist for the need
of a machine learning approach. The first is the growing number of large databases
that store instances of diagnostic tasks. Such data is typically accessed by keyword or
condition lookup. As the size of the database grows, such an approach becomes less
effective. Suppose an expert needs to look up cases similar to a case being diagnosed.
A query may easily return hundreds of matches. A method for determining relevant
conditions automatically would be needed in this case.

Another motivation is the evolution of complex systems that have an error detec-
tion capability. Communication networks are an example. Faults are detectable by
the network hardware. Several thousand faults may occur during a day. To debug
such a network, a human would need to sift through large amounts of data in search of
an explanation. An automated capability of deriving conditions under which certain
faults occur may be of great help to the engineer in uncovering underlying problems
in the hardware.

There are several approaches to inducing diagnostic rules from data. In this paper
we do not cover all the details, nor do we review the relevant machine learning litera-
ture. We restrict our discussion to briefly presenting the problem and its complexity,
and then we focus our attention on the induction of decision trees as an efficient so-
lution. We illustrate this discussion with simple examples. We then briefly motivate
and outline our algorithm (GID3) for inducing decision trees.

The second part of the paper provides some details of several industrial applica-
tions in semiconductor manufacturing domains for which GID3 and two of its exten-
sions were used and were found useful by the process and knowledge engineers. The
extensions to the basic decision tree algorithm were in response to two problems that
we faced in our dealings with industrial data. The typical assumption is that large
amounts of data are available when machine learning is to be applied. However, there
are cases when experiments may be very expensive. In such cases, training data are
limited. We developed a system, KARSM, that uses the Response Surface Method-
ology (RSM), coupled with GID3, to generate rules under such conditions. Another
problem we face with industrial data is that in some processes the data may be noisy.
Human recording errors, limited sensor resolution, or sensor or equipment reliability

Table 1: A Simple Training Set of Examples.

example | Selectivity | A line width class
e-1 normal normal power is high
e-2 normal high power is low
e-3 high high power is low
e-4 high low power is high
e-5 low normal flow rate is low
e-6 low high flow rate is low

problems introduce inaccuracies in the values of the attributes. We developed a sys-
tem, RIST, that utilizes statistically robust techniques along with GID3 to deal with
the noise problem.

2 The Machine Learning Approach

The machine learning approach calls for learning the relation between the input vari-
ables and the output variable directly from training data. A training example consists
of a description of a situation and the action performed by the expert in that situa-
tion. The situation is described in terms of a set of attributes. An attribute may be
continuous (numerical) or discrete (nominal). For example, a nominal attribute may
be shape with values { square, triangle, circle}. An example of a continuous attribute
is pressure or temperature. The action associated with the situation, the class to
which the example belongs, is a specification of one of a fixed set of allowed actions.
The class of each training example is typically determined by a human expert during
normal task execution. Example actions may be raise temperature, decrease pressure,
accept batch,... The goal of the learning program is to derive conditions, expressed
in terms of the attributes, that are predictive of the classes. Such rules may then be
used by an expert system to classify future examples. Of course, the quality of the
rules depends on the validity of the conditions chosen to predict each action.

A training example is therefore a list of the values of all the attributes along with

the class to which the example belongs. Assume there are m attributes Ay,..., Am,
k classes Cj,...,Ck. A training example is an m + 1-tuple (b1, by, . .., bm; C;), where
each b; is one of the values of the attribute A;: {ai,...,a,}, and C; is one of the k

classes. A rule for predicting some class C; consists of a specification of the values of
one or more attributes on the left hand side and that class on the right hand side.
As an example, consider the simplified small example set shown in Table 1. This
set consists of six examples e-1 through e-6. There are two attributes: selectivity
and A line width. The attributes can take the values low, normal, and high. There
are three classes: flow rate is high, power is low, and power is high. A simple rule

consistent with these examples may be:
IF (Selectivity = low) THEN Flow rate is low

Note that this is only an illustrative simplification. Typically, the number of examples
of a meaningful training set is at least in the hundreds, while the number of attributes
is usually in the tens.

Note that the rule shown above uses a very simplified set of conditions. Each
condition is a simple test of equality on a single attribute. Even with such a simple
language, the problem of discovering rules from data is very difficult. Assume that
there are m attributes as described above. and that on average an attribute takes
on one of r values. There are k - (r + 1)™ possible rules for predicting the k classes.
It is computationally infeasible for a program to explore the space of all possible
classification rules. In general, the problem of determining the minimal set of rules
that cover a training set is NP-hard. It is therefore likely that a heuristic solution to
the problem is the only computationally feasible one.

2.1 Inducing Decision Trees from Training Examples

A particularly efficient method for extracting rules from data is to generate a decision
tree [2, 14]. A decision tree consists of nodes that are tests on the attributes. The
outgoing branches of a node correspond to all the possible outcomes of the test at
the node. The examples at a node in the tree are thus partitioned along the branches
and each child node gets its corresponding subset of examples. A popular algorithm
for generating decision trees is Quinlan’s ID3 [14], now commercially available.

ID3 starts by placing all the training examples at the root node of the tree.
An attribute is then chosen to partition the data. For each value of the chosen
attribute, a branch is created and the corresponding subset of examples that have the
attribute value specified by the branch are moved to the newly created child node.
The algorithm is then applied recursively to each child node until either all examples
at a node are of one class, or all the examples at that node have the same values for
all the attributes. An example decision tree generated by ID3 for the sample data set
given in Table 1 is shown in Figure 1.

Every leaf in the decision tree represents a classification rule. The path from the
root of the tree to a leaf determines the conditions of the corresponding rule. The
class at the leaf represents the rule’s action.

Note that the critical decision in such a top-down decision tree generation al-
gorithm is the choice of attribute at a node. The attribute selection is based on
minimizing an information entropy measure applied to the examples at a node. The
measure favors attributes that result in partitioning the data into subsets that have
low class entropy. A subset of data has low class entropy when the majority of ex-
amples in it belong to a single class. The algorithm basically chooses the attribute
that provides the locally maximum degree of discrimination between classes. Let us
examine this attribute selection method more carefully.

4

normal i high
Low flowrate

*
High Power Low Power Low Power High Power
Figure 1: The Decision Tree Generated by ID3.

Let A be a set of m attributes {A;, As,...,An}, let C be a set of k classes
{C1,C4,...,Ck}, and let S be a set of examples at some node. The set of possible
values for an attribute A; € A is referred to as Range(A;). Each example in S is an
(m + 1)-tuple of the form: (V4,V4,...Vy;Ck), where V; € Range(Ai),i = 1,...,m,
and Cj € C is the class of the example. Define Psc;, the probability of occurence
of class C; € C in a set S of examples, to be the proportion of examples in S that

are in class C;: Psg; = Heeslc’“;’(e)=cj H The first notion that needs to be defined
is a measure of class uncertainty in a set S of examples. This is achieved by using
an uncertainty or information entropy measure: The class information entropy in the
set S of examples is defined to be:

k
Ent(S) = — Y Psc; logy(Ps,c;)-
-

Note that Ent(S) is minimum when all examples in S are in one class. It is maximum
when all k classes are equally likely in S and its maximum value then is log,(k). Thus,
0 < Ent(S) < log,(k). When the entropy is minimum, there is only one class in the
set S, hence one’s uncertainty regarding the class of an example from S is minimum.
On the other hand, if all classes in S are equally likely, it is most difficult to correctly
“guess” the class of an example from S, whence, uncertainty is maximum.

ID3 measures the “goodness” of a partition on S by the average class entropy of
its component blocks. It favours a partition of S that results in subsets in which the
examples are distributed “less randomly” over the possible classes, i.e., subsets for
which the class uncertainty is small. To choose the attribute that would best achieve
this, for each attribute A; that takes more than one value for the examples in S,
ID3 partitions S into the sets S;; consisting of all examples in S having value V; for
attribute A;: S;; = {e € S|A; = V; for e}. The weighted sum of of the individual
class entropies of the subsets in the partition on S induced by the attribute A; is
referred to as the information entropy of attribute A; with respect to the set S:

R
E(A;, S) = E -ll—Sjl—lEnt(S.‘j) (1)
Vj€Range(A;)

5

Hence, the information gain of attribute A; is defined to be the decrease in entropy
due to the partition induced by A;:

Gain(A;, S) = Ent(S) — E(A;, S). 2)

It is easy to show that 0 < Gain(A;, S) < log,(k).

For further partitioning of a node S in the tree, the ID3 algorithm selects the
attribute A; for which the information gain is maximized. Note that for any given
S, the value of Ent(S) is constant. Thus, ID3 selects the attribute that induces the
partition having the least average class information entropy.

One problem with the information entropy minimization heuristic introduced
above is that the formula of Equation 2 is biased in favour of attributes with a
larger number of values[14]. A new measure to compensate for this bias is intro-
duced. For an attribute A; € A, and a set S of examples partitioned into the subsets
S;; consisting of all examples in S that have value V; for the attribute A;,

|53 (I&‘jl)
IV(A;, S) = - —log, | —=] -
v,-enge(A.-) EaNE

IV (A;, S) measures the degree of randomness of the distribution of the examples in
S over the values of A;. Note that it does not take into account what the classes of
these examples are. The gain formula of equation 2 is modified to be the Gain Ratio:

Ent(S) — E(A;, S) _ Gain(4A;, S)
IV(A;, S) - IV(A,S8)

GainR(A;, S) =

Although this correction has its problems, especially when I'V is very small, it seems
to work well in ID3 on the average. From our experiments, ID3 generally produced
better trees with the IV measure than without. We refer to this version of ID3 as
ID3-1IV.

2.2 Problems with the ID3 Approach

ID3 is essentially employing a heuristic, hill-climbing, non-backtracking search through
the space of possible decision trees. Thus, weaknesses in the ID3 algorithm may cause
it to “miss” better decision trees for the same data.

We discuss what we precisely mean by “better” trees in [5]. For the purposes of
this paper, we simply say that one decision tree is better than another decision tree
for the same training data set, if the former has a smaller number of leaves. The other
important performance measure is the error rate of the tree on classifying examples
outside the training set. For other performance measures used see (3, 5, 8]. This
section addresses some of the problems inherent in the ID3 approach that cause it to
generate overspecialized decision trees.

Perhaps the most pronounced of the problems is the irrelevant values problem.
When ID3 chooses an attribute for branching out of a node, it creates a branch
for each attribute value that appears in the examples. Some of the values of that
attribute may be relevant to the classification, yet the rest may not be. The subtrees
generated by such irrelevant values will result in overspecialized classification rules—
rules that check for unnecessary or irrelevant preconditions. Consider the following
example. Assume we are in a world where we are trying to classify objects into
the classes nutritious, useful, poisonous, dreadful,... Suppose one of the attributes is
colour. Assuming that an object whose colour is either blue or red may, under certain
other conditions, be poisonous. Suppose that colour is not relevant to any other
classification; testing on the individual values of the other colours { green, yellow,
...} does not make any sense. The only relevant information that the colour green
contains is the fact that the colour is not blue or red. If ID3 used colour for branching,
however, some rules for classifying an object into the class nutritious may actually
test for the irrelevant fact of whether an object’s colour is, say, yellow.

The problem of irrelevant values also leads to the problem of reduced training
data. Since the data are unnecessarily partitioned along the irrelevant values of an
attribute, each of the subtrees generated under an irrelevant branch will be based
on a subset of the training data that was unnecessarily reduced. Consequently, the
quality of subsequent choices of attributes made in each subtree are likely to be of a
lower quality, leading to an overall worse tree. The problem reduced training data is
an important problem in decision tree generation, in general.

Another problem related to the problem of irrelevant values is the problem of
missing branches. Missing branches essentially represent a reduction in the induc-
tive capacity of the tree. They are due to the fact that some of the reduced subsets at
the non-leaf nodes do not necessarily contain examples of every possible value of the
branching attribute. The following example illustrates this problem: Consider the
ID3 tree of Figure 1 generated for the data set of Table 1. Assume it is the case that
values high and normal for attribute selectivity do not have any particular relevance
to the classes, however, the value low is predictive of the class: low flowrate. Consider
two possible unclassified examples which are to be classified by the tree of Figure 1.

e : (Selectivity = low) & (A line width = low)
e’ : (Selectivity = normal) & (A line width = low)

Both e and €’ have combinations of attribute values that did not appear in the training
set. However, the tree readily classifies e as an example of low flow rate . €’ fails to
be classified by the tree because the subtree under the normal selectivity branch has
no branch for low Aline width.

In summary, the irrelevant attribute values cause the occurence of other serious
problems in ID3-generated tree. The final effect is that these problems collectively
result in overspecialized trees. If our goal is to find a classifier that is as general as
possible, then these problems should be avoided whenever possible.

2.3 The GID3 Algorithm

To avoid some of the problems described above, we developed the Generalized ID3
(GID3) algorithm. We generalized the ID3 algorithm so that it does not necessarily
branch on each value of the chosen attribute. GID3 can branch on arbitrary individual
values of an attribute and “lump” the rest of the values in a single default branch.
Unlike the other branches of the tree which represent a single value, the default branch
represents a subset of values of an attribute. Unnecessary subdivision of the data may
thus be reduced.

The tendency of GID3 to branch on all or some of the values of an attribute is
controlled by a user-specified parameter, TL. For a set S of examples, GID3 first
evaluates each attribute value pair separately. Suppose an attribute A; € A has
values in its range: Range(A;) = {V4,...,V,}. Then an attribute value pair, (4;, V)
for V; € Range(A;), partitions the set S into S4,—v;, the subset of examples in S that
have A; = Vj, and S AV the remaining examples in S. We can therefore evaluate
the entropy of the partition induced by the pair (A;, V;) as we did for an attribute:

-
Ent(Sa=v;) + |T—:;|V’—|Ent(SA,.¢vj) (3)

|Sai=v;

E((A,',Vj),S)= lsl

Thus, for each attribute-value pair we can define a “temporary” attribute that takes
on the values { True, False } for examples in S. We can thus find the “best” attribute-
value pair, the pair having the minimum entropy or maximum gain:

Gain((A;, V;),) = Ent(S) — E((A:, V;), 5) (4)

We multiply the best gain by the tolerance level (TL) parameter to get a threshold
gain. All pairs whose gain is at least as high as this threshold gain are considered
relevant, otherwise they are not. Thus, only a subset of the values of any given
attribute may be considered relevant.

For each attribute, this evaluation allows us to define a corresponding new at-
tribute whose values are a subset of the original attribute values. We refer to the
new attribute AP; that has a subset of the values of A; as a phantom attribute. The
term phantom refers to the fact that it is defined only at the evaluation stage. Once
an attribute is chosen for branching, the attribute A; is restored to its original state.
The algorithm for deciding which of the values of A; are relevant is given below:

Begin Algorithm: GID3 Phantomization

Inputs: TL: user-determined parameter in range [0, 1].
S: a set of training examples.
A: a set of discrete attributes defined over S.

1. For each attribute-value pair (A;,V;) appearing in the examples’ in S, create
a binary-valued “temporary attribute” (A; = V;) which takes the value TRUE
for examples that have value V; for the attribute A;, and the value FALSE for
all other examples in S.

2. For each binary-valued temporary attribute (A; = V;) defined in step 1, E((A;
Vi), S) as defined in equation 4 is computed. Note that Range({A; = V;))
{TRUE,FALSE}.

3. Let MAX-Gain be the maximum of the values computed in step 2 above.

4. Let Threshold-G = TL x MAX-Gain.

5. Construct a set of phantom attributes, AP, as follows:

(a) AP « 0.
(b) For each attribute A; € A, for which more than one value appears in the
examples in S, Do
i. Default « 0; R « 0.
ii. For each temporary attribute (A; = V) defined in step 1 Do
IF Gain({A; =V;),S) > Threshold-G
THEN R «— RU{V;}
ELSE Default «— Default U{V;}
iii. IF R # (0 THEN AP « APU {AP;}
where AP; is the phantom attribute corresponding to A;,
and Range(AP;) = RU { Default }.

6. Conduct the ID3-IV algorithm to choose an attribute out of the set of phantom
attributes AP constructed in 5.

End Algorithm.

In order to avoid branching on irrelevant values of the attribute, only the values
that appear to be relevant, according to the information measure, may potentially
be branched on. All other values are lumped together in one default value for the
attribute. The tolerance level (TL) is user determined. TL specifies the degree of
tolerance for deviation of the information gain of an attribute-value pair from the
maximal gain value over all pairs (see algorithm for the definitions of TL and the
set of phantom attributes AP.) Attribute values that fall outside this tolerance range
are treated as a single “default” value. Note that if all values of an attribute fall
outside the tolerance range, no corresponding phantom attribute is constructed. Thus
|AP| < |A|. Furthermore, |Range(AP;)| < |Range(A;)| for all AP; € AP.

Setting TL= 0 results in behaviour that exactly matches that of ID3 since a pair’s
gain is allowed to be as low as 0% of the best gain; thus all pairs pass the filtering

1Values V; appearing on the path from the root to the node representing S are excluded from
consideration.

{high, normal}

Low flowrate
i

Low Power High Power High Power

Figure 2: The Decision Tree Generated by GID3.

stage. The other extreme occurs when TL= 1.0, where only the attribute-value pairs
whose gain measure ezactly matches the best gain may potentially be branched on;
the rest are grouped together in a “default” branch. In most cases, this setting is
expected to result in a binary decision tree—branching on one value with the rest
of the values on the default branch. As TL varies from 0.0 to 1.0, the algorithm
generates different trees. For a given set of data, we claim the existence of a setting
for TL that results in the generation of a “better” decision tree than that of ID3.

The issue of determining the proper setting of TL for a given set of data set
is beyond the scope of this presentation. Our initial motivation for developing the
GID3 algorithm was to empirically verify our hypothesis that for some TL setting,
GID3 will outperform ID3. We have experimentally verified that, indeed, there is
always a TL setting which allows GID3 to outperform ID3 [3, 6, 8]. We have since
formulated a new algorithm, GID3*, which does not depend on the user-specified
parameter TL [6]. Extensive empirical tests, over many synthetic and industrial data
sets from several domains, have demonstrated that GID3* outperforms GID3 for any
of the TL settings tested. A description of GID3* is beyond the scope of this paper.
Furthermore, the applications described in this paper were initially performed using
GID3 with TL set by the user.

The algorithm described above is obviously designed to avoid the problem of
irrelevant values. As a side effect, the procedure will also generate trees that are less
likely to suffer from missing branches as shown in the following example. Figure 2
shows the tree that GID3 would generate for the data set of Table 1. Recall that the
ID3 tree for this data set (shown in Figure 1) suffered from the problem of missing
branches as illustrated by the example ¢’. Note that both examples e and e’ above
are now classifiable by the GID3 tree, indicating a higher inductive power for the tree
generated by the new approach.

Finally, we have not discussed how continuous-valued attributes are handled in
GID3. A continuous-valued attribute is discretized by quantizing its range into inter-
vals. The algorithm for discretizing the range into two intervals is described in detail
in [7]. This is done by selecting a value in the range of the attribute and cutting
the range in two at that point. We have generalized the algorithm so that multiple

10

intervals can be obtained rather than just two. This enables GID3 and GID3* to
discover even better decision trees. For details, the reader is referred to [6, 8]. A
new discretization is derived for each node depending on the data set at that node.
Once a continuous-valued attribute has been discretized, it is subsequently treated
as a discrete attribute by the learning algorithm. Hence, only a subset of the derived
intervals may be selected for branching.

We now turn our attention to the application of GID3 to problems in the domain
of semiconductor manufacturing. Interested readers are referred to [8, 3] for detailed
accounts of the ID3 and GID3 algorithms, the attribute selection criterion, the weak-
nesses of the ID3 approach, and various performance measures to evaluate the quality
of the resulting trees.

2.4 Applications of GID3 in Semiconductor Manufacturing

In this section we discuss several applications of the GID3 algorithm to semiconductor
manufacturing domains. Most of these domains involve the reactive ion etching (RIE)
process. The RIE process is a wafer etching process that promises increased precision
and higher device density. It has been targeted for automation by the Semiconductor
Research Corporation (SRC), a consortium of major U.S. companies in semiconduc-
tor manufacturing. One of the steps necessary for automation is the development of
expert systems that determine process parameter settings based on given output con-
straints. The problem is that the process is not well-understood and no satisfactory
methods for determining proper control settings exist.

To illustrate the types of industrial tasks to which GID3 can be applied, we de-
scribe application tasks from three categories: RIE process diagnosis, RIE process
optimization, and an emitter piloting application.

2.4.1 Process Diagnosis and Optimization

The goal of process diagnosis is to derive rules for diagnosing faults by deciding
which process parameters are not correctly set. We mention two process diagnosis
applications. The first project’s goal is to acquire a set of RIE process diagnostic
rules from a collection of production log data that contain fault inspection results by
process engineers where the specified pattern was not etched correctly in the metal
on a wafer. We discuss this application in detail when we discuss an extension of
GID3 to make it more robust in Section 4.

The second project was aimed at identifying relationships between RIE process
problems, such as reduction in yield, and corresponding process parameters including
the flow rate of each gas component and the chamber pressure for different etching
steps. This data set was derived by regression analysis which statistically identifies
the geometric patterns such as length, corners and gaps responsible for the yield loss.
Classes consisted of dominating defect patterns. The details of this project with

11

Westinghouse and the National Bureau od Standards are discussed in [11]. The rules
derived by GID3 were used to analyze and understand the process behavior.

In the process optimization category, the project targeted deriving rules for dealing
with situations where the operating point drifts away from the optimal operating
point in the parameter space. We discuss this application in detail in Section 5 in
the context of combining the GID3 approach with the response surface methodology
(RSM) for process modelling.

2.4.2 An Emitter Piloting Application

Finally, we briefly discuss our effort on a project aimed at facilitating the knowledge
acquisition effort for the development of an emitter piloting advisory expert system
at Harris Corporation. GID3 has been applied successfully to acquire knowledge for
minimizing steps in emitter piloting dispositions. Emitter piloting is a process of tun-
ing integrated circuits printed in wafer so that device specification can be satisfied.
This task is typically carried out by a human operator. The initial cycle time is deter-
mined by experience and cycle time adjustment is then guided by the measurement
of two device parameters. If the values of the two parameters fall in their respective
desired ranges, the cycle time is accepted for batch tuning and is called the “shooting
time”. Otherwise, it is either increased or decreased to bring parameter values within
desirable ranges. The number of steps needed before success in such a process is
greatly affected by operator experience. Such experience is very valuable but is very
difficult to encode in rules. The purpose of the project was to collect all sequences of
trials conducted and to use the machine learning approach to attempt to extract the
knowledge underlying the actions of human operators. See [16] for further details of
this domain.

The raw data used in knowledge acquisition is composed of numerous experiment
data logs, each of which consists of sequences of cycle time adjustments targeting
one shooting time. For every trial in each sequence, the cycle time used and two
parameter measurement values were recorded. GID3 was used to learn rules for
jumping to a shooting time from an arbitrary cycle time by letting each data point
be the condition under which certain adjustments can be made to achieve a certain
shooting time. The difference between the current cycle time and the actual shooting
time for each example was taken to be the predetermined class. The rules induced
by GID3 were evaluated by an expert and were deemed satisfactory. In this project
GID3 was used as a knowledge acquisition tool to gather rules for incorporation into
an expert system developed by Harris Semiconductor.

3 Dealing with Industrial Data Problems

For the rest of this chapter, we focus on two special problems encountered in industrial
applications and the solutions we devised to combat them. The problems are:

12

A=a Aza B=b B+b
CB) fo
B=b B+#b A=a A+a

Figure 3: Two Decision Trees Representing the Two Rules.

Noisy Data: attribute values may be erroneous due to human recording errors, im-
perfect sensor repeatabilty, or defects in process equipment or sensors.

Limited Training Data: the training data may be small in size and conducting
more experiments may be too costly.

Along with each presentation of the extension to GID3 developed to deal with the
respective problems, we present a detailed account of a related application in RIE.

The extension developed to deal with noisy data is also capable of surmounting
some of the limitations imposed by a decision tree approach to the learning problem.
To illustrate this, consider the following example: Assume that a set of examples can
be classified by the following two rules:

If (A = a) Then C1 If (B =b) then C2

where A and B are attributes and C1 and C2 are classes. Although both rules have
only one condition, any equivalent decision tree for this set of rules will necessarily
introduce irrelevant conditions. Figure 3 shows two possible decision trees that can
rep<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>