SUBMNTTED To FEFE EXPERT Hanh 1q4ay

/

Machine Learning of Expert System Rules:
Applications to Semiconductor Manufacturing

Keki B. Irani Jie Cheng Usama M. Fayyad Zhaogang Qian

Artificial Intelligence Laboratory
Electrical Engineering and Computer Science Department
The University of Michigan
Ann Arbor, MI 48109-2122
(313) 764-8517

Irani@caen.engin.umich.edu

Abstract

This paper introduces a machine learning technique for aiding automated knowledge
acquisition. We motivate the problem of leaming classification rules from data and argue its
necessity in certain industrial settings. After introducing the learning algorithm, we review
some successful applications in semiconductor manufacturing. Finally we introduce two
extensions to our algorithm to deal with problems encountered in industry data: noise and
limited training sets.

We argue the appropriateness and necessity of machine leaming to circumvent the
“knowledge acquisition bottleneck”, and motivate and describe the leaming algorithm we
developed. The GID3 system was applied to five different projects with several Semicon-
ductor Research Corp. (SRC) industry members. We describe some of the application
areas where acceptable levels of success were achieved by the program. The application
areas include: identification of relationships between Reactive Ion Etching (RIE) process
anomalies and the corresponding parameter settings, acquisition of a set of rules for RIE
process optimization, and knowledge acquisition for an emitter piloting advisory expert
system. The paper aims to bring attention to machine learning as a useful tool in the
automation of the semiconductoring manufacturing process and as an aid to engineers in
interpreting and assimilating experimental results.

Keywords: Machine learning, automated knowledge acquisition, decision tree induction,
process diagnosis, classification.

1 Introduction

There is a steadily increasing drive towards automation in all aspects of human endeavor.
Automation promises cost-effectiveness, reliability, predictability, and accuracy. So far, only
fixed simple tasks in manufacturing have been automated. Automation of more complex tasks,
currently requiring intelligent decision making or problem solving on the part of humans, is a
much more difficult task.

One of the goals of Artificial Intelligence (AI) research is to provide mechanisms for
emulating human decision-making and problem solving capabilities, using computer programs.
The first Al attempts at such systems appeared as part of the technology known as “expert
systems”. Expert systems are intended to provide the means of encoding human knowledge
about a specific task in terms of situation-action rules. The idea is that if such systems are
endowed with sufficient knowledge of the task at hand, they may be able to emulate human
expert behavior in most, if not all, situations that arise during task execution.

Even with such a constrained and narrow goal, serious difficulties arose that hindered the
development of successful expert system applications. The first such difficulty is known as the
“knowledge acquisition bottleneck” [Fieg81]. Human experts find it difficult to express their
knowledge, or explain their actions, in terms of concise situation-action rules. If pressed to do
so, they typically produce rules that are incorrect, or that have many exceptions. The articulation
of specific intuitive knowledge into deterministic rules is a difficult, sometimes unrealistic,
problem for human experts. Interviewing domain experts to extract such knowledge is also an
expensive process demanding time from experts and knowledge engineers. In addition, it is
a difficult and often frustrating process for the domain experts involved. Industrial diagnostic
expert systems typically require a long development time.

A second problem arises in a different situation: What if a task is not well-understood, even
by the experts in that area? An example of this situation is manifested in our experience with
the automation of the reactive ion etching (RIE) process in semiconductor manufacturing. We
discuss some of the details of this application later in the paper. In such domains, abundant data

are available from the experiments conducted, or items produced. However, models that relate

how output variables are affected by changes in the controlling variables are not available.
Experts strongly rely on familiarity with the data and on “intuitive” knowledge of such a

domain. How would one go about constructing an expert system for such a domain?

1.1 The Machine Learning Approach

The machine learning approach to circumventing the aforementioned hurdles calls for extracting
classification rules from data directly. Rather than require that a domain expert provide domain
knowledge, the learning algorithm attempts to discover, or induce, rules that emulate expert
decisions in different circumstances by observing examples of expert tasks.

A training example consists of a description of a situation and the action performed by the
expert in that situation. The situation is described in terms of a set of attributes. An attribute
may be continuous (numerical) or discrete (nominal). For example, a nominal attribute may be
shape with values { square, triangle, circle}. An example of a continuous attribute is pressure
or temperature. The action associated with the situation, the class to which the example belongs,
is a specification of one of a fixed set of allowed actions. The class of each training example
is typically determined by a human expert during normal execution of his/her task. Example
actions may be raise temperature, decrease pressure, accept batch,... The goal of the learning
program is to derive conditions, expressed in terms of the attributes, that are predictive of the
classes. Such rules may then be used by an expert system to classify future examples. Of
course, the quality of the rules depends on the validity of the conditions chosen to predict each
action.)

A training example is therefore a list of the values of all the attributes along with the class to
which the example belongs. Assume there are m attributes A, ..., A, p classes Cy,...,C,.
A training example is an m + 1-tuple (b, by, ..., b,,; C;), where each b; is one of the values
of the attribute A4;: {ai1,...,a,}, and C; is one of the p classes. A rule for predicting some
class C; consists of a specification of the values of one or more attributes on the left hand side
and that class on the right hand side.

As an example, consider the simplified small example set shown in Table 1. This set

consists of six examples e-1 through e-6. There are two attributes: selectivity and A line

2

example | Selectivity | A line width class
e-1 normal normal power is high
e-2 normal high power is low
e-3 high high power is low
e-4 high - low power is high
e-5 low normal flow rate is low
e-6 low high flow rate is low

Table 1: A Simple Training Set of Examples.

width. The attributes can take the values low, normal, and high. There are three classes: flow
rate is high, power is low, and power is high. A simple rule consistent with these examples

may be:
IF (Selectivity = low) THEN Flow rate is low

Note that this is only an illustrative simplification. Typically, the number of examples of a
meaningful training set is at least in the hundreds, while the number of attributes is usually in

the tens.

1.2 Further Motivation for Machine Learning

In addition to the motivations listed above, two other reasons exist for the need of a machine
learning approach. The first is the growing number of large databases that store instances of
diagnostic tasks. Such data is typically accessed by keyword or condition lookup. As the size
of the database grows, such an approach becomes less effective. Suppose an expert needs
to look up cases similar to a case being diagnosed. A query may easily return hundreds of
matches. A method for determining relevant conditions automatically would be needed in this
case.

Another motivation is the evolution of complex systems that have an error detection capabil-
ity. Communication networks are an example. Faults are detectable by the network hardware.
Several thousand faults may occur during a day. To debug such a network, a human would

need to sift through large amounts of data in search of an explanation. An automated capability

of deriving conditions under which certain faults occur may be of great help to the engineer in
uncovering underlying problems in the hardware.
Both of the above situations indicate that machine classification learning is a potentially

powerful method for summarizing large amounts of data effectively.

1.3 Industrial Applications and Problems

There are several approaches to inducing diagnostic rules from data. In this paper we do
not cover all the details, nor do we review the relevant machine learning literature. We
restrict our discussion to briefly presenting the problem and its complexity, and then we focus
our attention on the induction of decision trees as an efficient solution. We illustrate this
discussion with simple examples. We then briefly motivate and outline our algorithm (GID3)
for inducing decision trees. The second part of the paper provides some details of several
industrial applications in semiconductor manufacturing domains for which GID3 was utilized
and was found useful by the process and knowledge engineers.

We also cover two problems that we faced in our dealings with industrial data and the
schemes we developed to overcome them. The typical assumption is that large amounts of
data are available when machine learning is to be applied. However, there are cases when
experiments may be very expensive. In such cases, training data are limited. We developed
a system, KARSM, that uses Response Surface Methodology, coupled with GID3, to generate
rules under such conditions. Another problem we face with industrial data is that in some
processes the data may be noisy. Human recording errors, limited sensor resolution, or sensor
or equipment reliability problems introduce inaccuracies in the values of the attributes. We
developed a system, RIST, that utilizes statistically robust techniques along with GID3 to deal

with the noise problem. Both of these systems will be briefly outlined later in the paper.

2 Inducing Rules from Training Examples

Assume that there are m attributes as described above. Let each attribute A; take on one of r;

values {a;1,...,a;,}. Assuming that on average an attribute takes on one of r values, there

4

{high, normal}

norma

High Power Low Power High Power Low Power Low Power High Power High Power
(A) ID3 Tree (b) GID3 Tree

Figure 1: Decision Trees Generated for the Simple Data Set of Table 1.

are p - (r + 1)™ possible rules for predicting the p classes. It is computationally infeasible for
a program to explore the space of all possible classification rules. In general, the problem of
determining the minimal set of rules that cover a training set is NP-hard. It is therefore likely
that a heuristic solution to the problem is the only feasible one. A particularly efficient method
for extracting rules from data is to generate a decision tree [Brie84, Quin86]. A decision tree
consists of nodes that are tests on the attributes. The outgoing branches of a node correspond
to all the possible outcomes of the test at the node. The examples at a node in the tree are thus
partitioned along the branches and each child node gets its corresponding subset of examples.
A popular algorithm for generating decision trees is Quinlan’s ID3 [Quin86], now commercially
available.

ID3 starts by placing all the training examples at the root node of the tree. An attribute is
then chosen to partition the data. For each value of the chosen attribute, a branch is created
and the corresponding subset of examples that have the attribute value specified by the branch
are moved to the newly created child node. The algorithm is then applied recursively to each
child node until either all examples at a node are of one class, or all the examples at that node
have the same values for all the attributes. An example decision tree generated by ID3 for the
sample data set given in Table 1 is shown in Figure 1(a).

Every leaf in the decision tree represents a classification rule. The path from the root of

the tree to a leaf determines the conditions of the corresponding rule. The class at the leaf
represents the rule’s action.

Note that the critical decision in such a top-down decision tree generation algorithm is the
choice of attribute at a node. The attribute selection is based on minimizing an information
entropy measure applied to the examples at a node. The measure favors attributes that result
in partitioning the data into subsets that have low class entropy. A subset of data has low
class entropy when the majority of examples in it belong to a single class. The algorithm
basically chooses the attribute that provides the locally maximum degree of discrimination

between classes.

3 Overcoming Problems with ID3 Trees

It is beyond the scope of this paper to discuss the details of the ID3 algorithm and the criterion
used to select the next attribute to branch on. The criterion for choosing the attribute clearly
determines whether a “good” or “bad” tree is generated by the algorithm. Since making the
optimal choice of attribute is computationally infeasible, ID3 utilizes a heuristic criterion which
favors the attribute that results in the partition having the least information entropy with respect
to the classes. This is generally a good criterion and often results in relatively good choices.
However, there are weaknesses inherent in the ID3 algorithm that are due mainly to the fact

that it creates a branch for each value of the attribute chosen for branching.

3.1 Problems with ID3 Trees

Let an attribute A, with possible values {a;, as,...,a,} be chosen for branching. ID3 will
partition the data along r branches each representing one of the values of A. However, it might
be the case that only values a, and a, are of relevance to the classification task while the rest
of the values may not have any special predictive value for the classes. These extra branches

are harmful in three ways:

1. They result in rules that are overspecialized. The leaf nodes that are the descendants of
the nodes created by the extraneous branches will be conditioned on particular irrelevant

attribute values. Since each leaf node corresponds to a classification rule, the irrelevant
conditions will appear in the preconditions of the corresponding rules.

2. They unnecessarily partition the data, thus reducing the number of examples at each
child node. The subsequent attribute choices made at such child nodes will be based on
an unjustifiably reduced subset of data. The quality of such choices is thus unnecessarily
reduced.

3. They increase the likelihood of occurence of the missing branches problem. This
problem occurs because not every possible combination of attribute values is present in
the examples.

The third problem can be illustrated in the ID3 tree shown in Figure 1(a). Consider two possible

unclassified examples which are to be classified by the tree of Figure 1(a):

exl: (Selectivity = low) & (A line width = low)

ex2: (Selectivity = normal) & (A line width = low)

Both ex1 and ex2 are examples that have combinations of attribute values that did not appear
in the training set of Table 1. However, the tree readily classifies ex1 as being the result of
an etch where the flow rate was low, but ex2 fails to be classified by the tree. This is because
the subtree under the normal selectivity branch has no branch for low Aline width. We shall
shortly illustrate how the occurence of missing branches may be avoided.

The main problem with the tree of Figure 1(a) is that the normal and high selectivity
branches should not be separated. Low selectivity is the only value of relevance to the occurence
of a problem. It would be desirable if the learning algorithm could somehow take account of
such situations by avoiding branching on attribute values that are not individually relevant.

This would reduce the occurence of the three problems listed above.

3.2 The GID3 Algorithm

To avoid some of the problems described above, we developed the GID3 algorithm!. We

generalized the ID3 algorithm so that it does not necessarily branch on each value of the chosen

1The name GID3 stands for Generalized ID3.

attribute. GID3 can branch on arbitrary individual values of an attribute and “lump” the rest
of the values in a single default branch. Unlike the other branches of the tree which represent
a single value, the default branch represents a subset of values of an attribute. Unnecessary
subdivision of the data may thus be reduced. Figure 1(b) shows the tree GID3 would generate
for the data set of Table 1. Note that both examples, ex1 and ex2, are classifiable by this tree.
The missing branch problem that prevented the tree of Figure 1(a) from classifying ex2 does
not occur in the tree of Figure 1(b).

We now turn our attention to the application of GID3 to problems in the domain of semi-
conductor manufacturing. Interested readers are referred to [Fayy91, Chen88] for detailed
accounts of the ID3 and GID3 algorithms, the attribute selection criterion, the weaknesses of
the ID3 approach, and various performance measures to evaluate the quality of the resulting
trees. Performance measures include error rate in classifying new examples and measures of

the size complexity of the generated tree.

4 Applications of GID3 in Semiconductor Manufacturing

In this section we discuss several applications of the GID3 algorithm to semiconductor man-
ufacturing domains. Most of these domains involve the reactive ion etching (RIE) process.
The RIE process is a wafer etching process that promises increased precision and higher de-
vice density. It has been targeted for automation by the Semiconductor Research Corporation
(SRC), a consortium of major U.S. companies in semiconductor manufacturing. One of the
steps necessary for automation is the development of expert systems that determine process
parameter settings based on given output constraints. The problem is that the process is not
well-understood and no satisfactory methods for determining proper control settings exist.

To illustrate the types of industrial tasks to which GID3 can be applied, we describe
application tasks from three categories: RIE process diagnosis, RIE process optimization, and
an emitter piloting application. The goal of process diagnosis is to derive rules for diagnosing
faults by deciding which process parameters are not correctly set. We describe two projects

in this category. In the process optimization category, the project targeted deriving rules for

powerl | power2 | power3 | timel | time2 | time3 | wafer# | topology outcome
1117 1134 490 8.98 7.20 5.0 18 v erosion
895 1139 492 10.26 | 8.2 5.0 24 v erosion
833 854 442 7.4 6.0 5.0 1 v sleeves
835 818 491 9.7 7.76 5.0 5 v none
859 835 490 9.9 792 5.0 2 v none
867 886 466 99 - |79 5.0 7 v sleeves
847 871 473 9.8 7.8 5.0 8 v sleeves
776 833 500 8.6 6.9 5.0 8 v none
77 813 490 8.7 7.0 5.0 4 v none
847 825 491 9.20 7.36 5.0 13 v erosion
851 843 490 17.2 43 50 6 v none
806 896 493 105 8.40 5.0 2 v none
844 822 493 9.16 7.33 5.0 14 v erosion
860 809 490 9.8 7.84 5.0 2 v none
867 825 452 9.7 1.76 5.0 2 v sleeves
878 819 454 24.1 14.4 5.0 1 t none
848 816 455 321.0 | 16.8 5. 9 t none
806 778 484 225 9.0 5.0 8 { sleeves
881 795 467 22.7 13.6 5.0 1 t none
172 868 490 8.7 7.0 5.0 7 v none
842 826 494 17.0 13.6 5.0 1 v none

Table 2: A Partial list of Data Logs for a RIE Process

dealing with situations where the operating point drifts away from the optimal operating point
in the parameter space. Finally, we briefly discuss our effort on a project aimed at facilitating
the knowledge acquisition effort for the development of an emitter piloting advisory expert

system.

4.1 Process Diagnosis

The first project’s goal is to acquire a set of RIE process diagnostic rules from a collection of
production log data that contain fault inspection results by process engineers. The goal is to
etch a specified pattern in the metal on a wafer.

Each data log contains about 60 data entries, including machine type, device specification,
material and resist thickness, plasma time, power, DC bias, chamber pressure, gas flow, tem-
perature, valve position and number of wafers. Since this is a multi-stage (three stage) etch,
each stage has its own set of measurements. A distinct table slot is used for visual inspection
after the etch. For this project, three types of inspection results are commonplace, namely,

normal, PR erosion, and sleeves. A partial list of such data logs is shown in Table 2. Process

fault diagnosis has been a regular demand on process engineers. Whenever a fault is detected,
its immediate cause needs to be identified and a decision is then made to correct the problem
by adjusting process parameters directly or indirectly. Determining such adjustments is a non-
trivial task. Abstracting these daily routines into rules that cover the task has been found to
be difficult. Extracting general rules that can be transferred across different processes and be
used to guide further reasoning to find physical laws governing the observed phenomena has
been especially difficult. For this project, the difficulty in diagnosing the faults is due to the
large number of process parameters, most of which vary greatly. These conditions naturally
make the domain appear promising for the application of machine learning techniques.

Once the attributes and classes are determined, GID3 can be used to induce a decision tree
from the available data. The decision tree is then transformed into a set of diagnostic rules
because the rule format is more general and is easier for process engineers to comprehend. In
order to get a set of rules which are general and reliable, and to overcome problems with noisy
data, we used the RIST package described later. RIST runs GID3 many times. Each time,
a random subset of the given data set is selected to induce rules. The rules are then tested
against the whole data set. A set of statistical criteria are used to select a subset of the rules
obtained from each GID3 session. We describe this method further in section 5.1.

Each of the rules generated provides a range of operating conditions with a prediction of
the process outcome under those conditions. The power of our machine learning approach is
manifested by the fact that most rules can predict the process outcome correctly with only one
to three tests on the attributes. Figure 2, shows four of the rules generated for the data of Table
2. These rules exemplify pieces of compact, previously unknown, knowledge that are found
useful by both process and knowledge engineers.

The second project was aimed at identifying relationships between RIE process problems,
such as reduction in yield, and corresponding process parameters including the flow rate of each
gas component and the chamber pressure for different etching steps. This data set was derived
by regression analysis which statistically identifies the geometric patterns such as length, corners
and gaps responsible for the yield loss. Classes consisted of dominating defect patterns. The

details of this project with Westinghouse are discussed in [Frie89]. The rules derived by GID3

10

Rule 1: IF erosion is observed Rule 3: IF sleeves are observed

THEN probably too many wafers are loaded,; THEN etching at stage I may not be sufficient;

Reduce number of wafers to < 11. Increase etch time for stage I to > 8.15 minutes.
Rule 2: IF erosion is observed Rule 4: IF sleeves are observed

THEN power at etch stage II may be too high; AND stage III power € [451,487]

Reduce power at etch stage II to < 956.5V. THEN Increase overetch percentage for stage II.

Figure 2: Rules for Diagnosing Faults of a RIE Process

were used to analyze and understand the process behavior.

4.2 Process Optimization

To achieve high yield, low defect density, and small geometry, RIE must operate at an optimal
point in the input parameter space. The problem, known as process optimization, Or process
design, is the most important problem that a plasma engineer has to face.

The goal of process optimization is to find a set of input parameters, usually referred to
as a recipe, such that the outputs can be optimized. For example, one may want to minimize
the line width change under the condition that selectivity is higher than a certain value and
uniformity is within a certain range.

A popular method to solve the process optimization problem is the Response Surface
Methodology (RSM) [Berg82]. RSM is a statistical method in which the input parameters of
RIE are treated as independent variables and the output parameters as response variables. For
each response variable, multiple regression analysis is applied to generate a response surface to
fit the data. Optimization techniques are then used to find a point that optimizes the response
variables under the given constraint [Berg82]. However, RSM has its drawbacks. It is a static
method in the following sense. Given a set of experimental data, a set of response surfaces
can be generated and a fixed optimal point can be found. According to this optimal point, a
recipe is formulated. The problem is that under a fixed recipe, the process might not be optimal
because certain hidden variables which were not considered in the design process influence the
process later. In other words, the response surface may drift so that the operating point may

no longer be optimal. Obviously, what we need is a set of rules which tell us where to move

11

No. | press. flow | % flow | A CD | CD unif. | Oxide loss | Oxide unif.
(mTorr) | (sccm) | (%) | (pm) | (um) (4) (4)
1 300 150 25 0.05 0.05 368 216.0
2 500 150 25 0.25 0.05 316 43.5
3 300 300 25 | 0.18 0.40 407 162.0
20 400 225 38 0.10 0.05 220 38.0

Table 3: Experimental Data for Process Optimization

in the parameter space to achieve the optimal output under the given constraints. This makes
for a dynamic, rather than static, solution to the optimization problem.

The above analysis lead us to consider using machine learning to process optimization
problems for RIE. Our objective was to generate a set of rules that tell us which input parameters
should be changed, and in which direction, if the outputs are not optimal or do not satisfy the
constraints. We discuss the general methodology that we applied to a particular project. Table
3 shows a partial set of experimental data we aquired from industry for this project. Pressure,
flow, and percent flow are input parameters while the other five columns of Table 3 represent
outputs. Each of the 20 items represents an experiment. To generate more data items, we used
KARSM (described later in section 5.2) to obtain an excess of 500 examples from these 20.

To apply GID3, obviously, we can regard input parameters as attributes and output param-
eters as outcomes. Since GID3 requires that each example have one class (outcome), we first
discretize and combine the output parameters. For the constraint variables, the values can be
discretized as either.low or high (based on the constraints). For the optimization variables,
the values are discretized as different levels such as very high, high, medium, low, very low.
The data is then fed into GID3 and a decision tree is obtained. In the decision tree, a leaf
represents a class of outputs. A leaf may represent an optimal class, for instance, (very low,
high, low, low) for “very low line width change, high selectivity, and low CD and Oxide uni-
formity”. This is an optimal class when one wants to minimize the line width change under the
condition that selectivity is higher than a certain value and uniformities are lower than certain

values. Other leaves may represent faulty classes. For instance: “high line width change, low

12

selectivity, low CD uniformity, and high Oxide uniformity”. To derive the required rules, the
condition—the path from tree root to leaf—of a faulty leaf is compared to the condition of a
leaf having an optimal class. The differences represent the changes needed to bring a faulty
operation to an optimal one. For example, assume that the condition of the optimal leaf is
“pressure below 300 mTorr, total flow above 180 sccm, percent flow above 40 %” and that
the condition of a faulty leaf is “pressure above 312 mTorr, total flow from 215 to 300 sccm,

percent flow below 37.5 %”. We can now derive a rule

“if selectivity is lower than normal, Oxide uniformity is higher than normal, line width
change is high, to minimize line width change, pressure should be decreased and percent
flow should be increased” .

4.3 An Emitter Piloting Expert System Application

GID3 has also been applied successfully to acquire knowledge for minimizing steps in emitter
piloting dispositions. Emitter piloting is a process of tuning integrated circuits printed in wafer
so that device specification can be satisfied. This task is typically carried out by a human
operator. The initial cycle time is determined by experience and cycle time adjustment is then
guided by the measurement of two device parameters. If the values of the two parameters
fall in their respective desired ranges, the cycle time is accepted for batch tuning and is called
the “shooting time”. Otherwise, it is either increased or decreased to bring parameter values
within desirable ranges. The number of steps needed before success in such a process is greatly
affected by operator experience. Such experience is very valuable but is very difficult to encode
in rules. The purpose of the project was to collect all sequences of trials conducted and to use
the machine learning approach to attempt to extract the knowledge underlying the actions of
human operators. See [Yang89] for further details of this domain.

The raw data used in knowledge acquisition is composed of numerous experiment data
logs, each of which consists of sequences of cycle time adjustments targeting one shooting
time. For every trial in each sequence, the cycle time used and two parameter measurement
values were recorded. GID3 was used to learn rules for jumping to a shooting time from an
arbitrary cycle time by letting each data point be the condition under which certain adjustments

can be made to achieve a certain shooting time. The difference between the current cycle time

13

and the actual shooting time for each example was taken to be the predetermined class. The
rules induced by GID3 were evaluated by an expert and were deemed satisfactory. In this
project GID3 was used as a knowledge acquisition tool to gather rules for incorporation into

an expert system developed by Harris Semiconductor.

5 Dealing with Industrial Data Problems

In conclusion to this presentation, we focus on two special problems encountered in industrial

applications and the solutions we devised to combat them. The problems are:

Noisy Data: attribute values may be erroneous due to human recording errors, imperfect sensor
repeatabilty, or defects in process equipment or sensors.

Limited Training Data: the training data may be small in size and conducting more experi-
ments may be too costly.

5.1 Dealing with Noisy Data

Empirical learning algorithms are typically sensitive to the presence of noise because they rely
solely on data to discover rules. Typically, they are not intended to have access to special
domain knowledge to guide their decisions. Noise in a training data set may cause irrelevant
rule conditions to be selected. The solution we devised combats noise in two ways:

1. Statistical evaluation (pruning) to identify and remove irrelevant conditions from rules.

2. Random sampling of multiple training sets and selection of statistically significant rules
from the trees generated for these training sets.

After a decision tree is generated, a statistical test is applied to remove rule preconditions
that are deemed statistically irrelevant, resulting in more general, pruned, rules. The statistical
test we use is Fisher’s Exact Test. It measures the probability that a hypotheses (in this case
a condition of a rule) is irrelevant to the outcome. If this probability is higher than a small
value, the condition is discarded. For details of the statistical test see [Quin87, Finn63].

This method of statistical pruning deals with the rules produced from one run of GID3.
By randomly sampling subsets from a given training set, many trees can be generated. For

each tree, we apply the statistical test and keep only the “good” rules. Finally, a subset of the

14

= Attributes
= Examples

Data set

Training sets

Decision s
Trees f
Initial : . _ i
= - then, =5
Tests rTest and prune irrelevant rule conditions J

Test and prune rules Test and prune rules with

of low confidence low prediction accuracy
Final Set of Rules l if then

Figure 3: Data Flow Diagram for RIST

surviving rules that covers the original training set is selected. When coupled with a method
for statistical significance testing, the multiple random sampling of the training set has proven
to be an effective technique for extracting a compact and reliable set of rules from the original
training set. The method, illustrated in Figure 3, has been implemented in a software package

named RIST (Rule Induction and Statistical Testing).

5.2 Dealing with Limited Training Sets

The learning algorithms we discussed do not use any special domain knowledge about the data
during tree or rule generation. They rely on the availability of large training samples to detect
the presence of meaningful reliable patterns or correlations. In some cases however, obtaining
training examples may be an expensive process. In this case, only a limited training set may

be available.

In section 4.2 we mentioned that RSM is standard methodology used in process optimiza-

15

Experiment

Design A RIST

”
A ” .
e Rules for conditions leading

Y = CX to optimal outcome
e Ly e Rules for conditions leading
y Sl to sub-optimal outcome
el o A
o.' .' '. ‘o .tc +
AT Rules for adjusting

Response .
surfaces Random parameters to achieve

samples optimal operation

Figure 4: Data flow diagram for KARSM

tion. The core component of this methodology is to approximate the given data by a polynomial
surface. Once the data is fitted with a surface, each point on the surface corresponds to a spec-
ification of the input and output variables. Since we know the target conditions that the output
variable must satisfy, we can quantize the output value into: { Good, Bad}, or into a finer
partition such as { Very Low, Low, Good, High, Very High}.

At this point, we can randomly choose a combination of input values, and the response
surface will give us the associated discretized output. As is shown in Table 4, 500 examples
can be extracted from the original data of Table 3. This gives us a method of extracting an
arbitrarily large training sample from an original small training set. Of course, the “usefulness”
of the extracted large training set depends on the correctness of the response surface generated
to fit the original data. The generated data set is then fed into RIST (or GID3) to extract

qualitative rules that describe the behavior of the data.
We have implemented this procedure in a software package called KARSM (Knowledge
Acquisition from Response Surface Methodology). It is Illustrated in Figure 4.

The reader may wonder why we do not stop with the response surface and use it directly

to describe the process. The answer is that the response surface does not give an easily un-

16

[No. | pressure | total flow | percent Cly flow | class |

1 377 192 49 ab,11,1

2 342 297 36 h,1,Lh

3 491 241 34 ab,h,Lh
499 452 211 37 m,h,h,1
500 303 185 42 vLh,1,1

Table 4: Classified Random Samples

derstandable description of the process. By generating rules from the surface we essentially
extract a qualitative description of the behavior of the process in terms of desirable and un-
desirable regions of the output space. The procedure for extracting, from the decision tree,
the qualitative rules that specify the direction in which process parameters should be changed,

when the operating point drifts, is described in section 4.2.

6 Conclusion

We have introduced the general problem of extracting rules from data for the purpose of
automating the knowledge acquisition process. We described the GID3 algorithm for inducing
decision trees and its use in automating knowledge acquisition in several application domains.
Given a training set of data, the algorithm produces a decision tree for predicting the outcome
of future experiments under various, more general conditions. The tree may then be translated
into a set of rules for use in expert systems. We also introduced two extensions of GID3 to
deal with noise and limited training set availability.

We have utilized GID3 to extract knowledge from data in several application domains.
In each case, the decision trees obtained, or the English version of the generated rules, were
sent to the engineer who supervises the experiments and provides the data. The derived rules
were judged to be consistent with the data and conformant with the engineers’ expectations. A
derived model, or a discovered pattern, that is consistent with a process engineer’s expectation

is of great value in two ways:

17

1. It provides a previously unavailable mechanical means for classifying events or relating

faults to parameters.

2. Tt gives the process engineer further insight into the process by making explicit a pattem

’ (13

that was previously implicit as pairt of the engineer’s “intuition” about the process.

We believe that machine learning techniques have an important role to play in the automa-
tion and improvement of manufacturing techniques as well as many other diagnostic tasks. A
machine learning approach avoids the ubiquitous “knowledge acquisition bottleneck” by mini-
mizing the required interaction with domain experts and focussing on a resource that is much
easier to obtain: experimental data. A further advantage of using an induction system such
as GID3 is that knowledge acquisition can be fast, accurate, and most importantly, can be

automated.

Acknowledgements

This work was supported by the University of Michigan SRC Research Program under contract #89-
MC-085. We would also like to thank Hughes Microelectronics Center for their partial support of this
work in the form of an unrestricted grant.

References

[Berg82] Bergendahl, A.S., Bergeron, S.F., and Harmon, D.L. (1982). “Optimization of plasma pro-
cessing for silicone-gate FET manufacturing applications.” IBM Journal of Res. Dev. vol. 26,
no. 5.

[Brie84] Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984). Classification and Re-
gression Trees. Monterey, CA: Wadsworth & Brooks.

[Chen88] Cheng, J., Fayyad, UM, Irani, K.B., and Qian, Z. (1988). “Improved decision trees: A
generalized version of ID3.” Proceedings of the Fifth International Conference on Machine
Learning. pp. 100-108. Ann Arbor, MIL.

[Fayy91] Fayyad, UM. (1991). On the Induction of Decision Trees for Multiple Concept Learning.
Dissertation in preparation, EECS Dept., The University of Michigan, Ann Arbor.

[Fieg81] Fiegenbaum, E.A. (1981). “Expert systems in the 1980s.” In Bond, A. (Ed.), State of The
Art Report on Machine Intelligence. Maidenhead: Pergamon-Infotech.

[Finn63] Finney, D.J., Latscha, R., Bennett, B.M., and Hsu, P. (1963). Tables for Testing Significance
in a 2x2 Contingency Table. Cambridge: Cambridge University Press.

18

[Frie89]

[Quin86]
[Quin87]

[Yang89]

Friedhoff, C.B., Cresswell, M.W., Lowry, C.R., and Irani, K.B. (1989). “Analysis of intra-
level isolation test structure data by multiple regression to facilitate rule identification for
diagnostic expert systems.” Proceedings of the International Conference on Microelectronic
Test Structures. Edinburgh, Scotland.

Quinlan, J.R. (1986). “Induction of decision trees.” Machine Learning 1, No. 1. pp. 81-106.

Quinlan, J. R. (1987). “Generating Production Rules From Decision Trees.” Proceedings of
the Tenth International Joint Conference on Artificial Intelligence. Milan, Italy.

Yang, Y K. (1989). “EPAS: An emitter piloting advisory expert system for IC emitter dis-
position.” Proceedings of Semicon West.

19

