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Abstract. An important component of many data mining projects is finding a good classification algorithm, a
process that requires very careful thought about experimental design. If not done very carefully, comparative
studies of classification and other types of algorithms can easily result in statistically invalid conclusions. This
is especially true when one is using data mining techniques to analyze very large databases, which inevitably
contain some statistically unlikely data. This paper describes several phenomena that can, if ignored, invalidate
an experimental comparison. These phenomena and the conclusions that follow apply not only to classification,
but to computational experiments in almost any aspect of data mining. The paper also discusses why comparative
analysis is more important in evaluating some types of algorithms than for others, and provides some suggestions
about how to avoid the pitfalls suffered by many experimental studies.
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1. Introduction

Data mining researchers often use classifiers to identify important classes of objects within
a data repository. Classification is particularly useful when a database contains examples
that can be used as the basis for future decision making; e.g., for assessing credit risks,
for medical diagnosis, or for scientific data analysis. Researchers have a range of different
types of classification algorithms at their disposal, including nearest neighbor methods,
decision tree induction, error back propagation, reinforcement learning, and rule learning.
Over the years, many variations of these algorithms have been developed and many studies
have been produced comparing their effectiveness on different data sets, both real and
artificial. The productiveness of classification research in the past means that researchers
today confront a problem in using those algorithms, namely: how does one choose which
algorithm to use for a new problem? This paper addresses the methodology that one can
use to answer this question, and discusses how it has been addressed in the classification
community. It also discusses some of the pitfalls that confront anyone trying to answer
this question, and demonstrates how misleading results can easily follow from a lack of
attention to methodology. Below, I will use examples from the machine learning community
which illustrate how careful one must be when using fast computational methods to mine
a large database. These examples show that when one repeatedly searches a large database
with powerful algorithms, it is all too easy to “find” a phenomenon or pattern that looks
impressive, even when there is nothing to discover.
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It is natural for experimental researchers to want to use real data to validate their systems.
A culture has evolved in the machine learning community that now insists on a convincing
evaluation of new ideas, which very often takes the form of experimental testing. This is a
healthy development and it represents an important step in the maturation of the field. One
indication of this maturation is the creation and maintenance of the UC Irvine repository
of machine learning databases (Murphy, 1995), which now contains over 100 datasets that
have appeared in published work. This repository makes it very easy for machine learning
researchers to compare new algorithms to previous work. The data mining field, although a
newer area of research, is already evolving a methodology of its own to compare the effec-
tiveness of different algorithms on large databases. Large public databases are becoming
increasingly popular in many areas of science and technology, bringing with them great
opportunities, but also technical dangers. As we will see below, however, one must be very
careful in the design of an experimental study using publicly available databases.

Although the development and maintenance of data repositories has in general been
positive, some research on classification algorithms has relied too heavily on the UCI
repository and other shared datasets, and has consequently produced comparative studies
whose results are at best confusing. To be more precise: it has become commonplace to
take two or more classifiers and compare them on a random selection of datasets from the
UCI repository. Any differences in classification accuracy that reach statistical significance
(more on that below) are provided as supporting evidence of important differences between
the algorithms. As argued below, many such comparisons are statistically invalid. The
message to the data mining community is that one must be exceedingly careful when
using powerful algorithms to extract information from large databases, because traditional
statistical methods were not designed for this process. Below I give some examples of how
to modify traditional statistics before using them in computational evaluations.

2. Comparing algorithms

Empirical validation is clearly essential to the process of designing and implementing
new algorithms, and the criticisms below are not intended to discourage empirical work.
Classification research, which is a component of data mining as well as a subfield of
machine learning, has always had a need for very specific, focused studies that compare
algorithms carefully. The evidence to date is that good evaluations are not done nearly
enough—for example, Prechelt (1996) recently surveyed nearly 200 experimental papers
on neural network learning algorithms and found most of them to have serious experimental
deficiencies. His survey found that a strikingly high percentage of new algorithms (29%)
were not evaluated on any real problem at all, and that very few (only 8%) were compared
to more than one alternative on real data. In a survey by Flexer (1996) of experimental
neural network papers, only 3 out of 43 studies in leading journals used a separate data set
for parameter tuning, which leaves open the possibility that many of the reported results
were overly optimistic.

Classification research comes in a variety of forms: it lays out new algorithms and
demonstrates their feasibility, or it describes creative new algorithms which may not (at
first) require rigorous experimental validation. It is important that work designed to be
primarily comparative does not undertake to criticize work that was intended to introduce
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creative new ideas or to demonstrate feasibility on an important domain. This only serves
to suppress creative work (if the new algorithm does not perform well) and encourages
people instead to focus on narrow studies that make incremental changes to previous work.
On the other hand, if a new method outperforms an established one on some important
tasks, then this result would be worth reporting because it might yield important insights
about both algorithms. Perhaps most important, comparative work should be done in a
statistically acceptable framework. Work intended to demonstrate feasibility, in contrast
to purely comparative work, might not always need statistical comparison measures to be
convincing.

2.1. Data repositories

In conducting comparative studies, classification researchers and other data miners must be
careful not to rely too heavily on stored repositories of data (such as the UCI repository)
as its source of problems, because it is difficult to produce major new results using well-
studied and widely shared data. For example, Fisher’s iris data has been around for 60
years and has been used in hundreds (maybe thousands) of studies. The NetTalk dataset
of English pronunciation data (introduced by Sejnowski and Rosenberg, (1987) has been
used in numerous experiments, as has the protein secondary structure data (introduced by
Qian and Sejnowski (1988), to cite just two examples. Holte (1993) collected results on 16
different datasets, and found as many as 75 different published accuracy figures for some
of them. Any new experiments on these and other UCI datasets run the risk of finding
“significant” results that are no more than statistical accidents, as explained in Section
3.2. Note that the repository still serves many useful functions; among other things, it
allows someone with a new algorithmic idea to test its plausibility on known problems.
However, it is a mistake to conclude, if some differences do show up, that a new method is
“significantly” better on these datasets. It is very hard – sometimes impossible – to make
such an argument in a convincing and statistically correct way.

2.2. Comparative studies and proper methodology

The comparative study, whether it involves classification algorithms or other data extraction
techniques, does not usually propose an entirely new method; most often it proposes changes
to one or more known algorithms, and uses comparisons to show where and how the changes
will improve performance. Although these studies may appear superficially to be quite
easy to do, in fact it requires considerable skill to be successful at both improving known
algorithms and designing the experiments. Here I focus on design of experiments, which
has been the subject of little concern in the machine learning community until recently
(with some exceptions, such as (Kibler and Langley, 1988) and (Cohen and Jensen, 1997)).
Included in the comparative study category are papers that neither introduce a new algorithm
nor improve an old one; instead, they consider one or more known algorithms and conduct
experiments on known datasets. They may also include variations on known algorithms.
The goal of these papers is ostensibly to highlight the strengths and weaknesses of the
algorithms being compared. Although the goal is worthwhile, the approach taken by such
papers is sometimes not valid, for reasons to be explained below.
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3. Statistical validity: a tutorial

Statistics offers many tests that are designed to measure the significance of any difference
between two or more “treatments.” These tests can be adapted for use in comparisons of
classifiers, but the adaptation must be done carefully, because the statistics were not designed
with computational experiments in mind. For example, in one recent machine learning
study, fourteen different variations on several classification algorithms were compared on
eleven datasets. This is not unusual; many other recent studies report comparisons of similar
numbers of algorithms and datasets.1 All 154 of the variations in this study were compared
to a default classifier, and differences were reported as significant if a two-tailed, paired t-test
produced a p-value less than 0.05.2 This particular significance levelwas not nearly stringent
enough, however: if you do 154 experiments, then you have 154 chances to be significant, so
the expected number of “significant” results at the 0.05 level is 154∗0.05 = 7.7. Obviously
this is not what one wants. In order to get results that are truly significant at the 0.05 level,
you need to set a much more stringent requirement. Statisticians have been aware of this
problem for a very long time; it is known as the multiplicity effect. At least two recent
papers have focused their attention nicely on how classification researchers might address
this effect (Gascuel and Caraux, 1992, Feelders and Verkooijen, 1995).

In particular, let α be the probability that if no differences exist among our algorithms,
we will make at least one mistake; i.e., we will find at least one significant difference. Thus
α is the percent of the time in which we (the experimenters) make an error. For each of our
tests (i.e., each experiment), let the nominal significance level be α∗. Then the chance of
making the right conclusion for one experiment is 1− α∗.

If we conduct n independent experiments, the chance of getting them all right is then
(1 −α∗)n. (Note that this is true only if all the experiments are independent; when they are
not, tighter bounds can be computed. If a set of different algorithms are compared on the
same test data, then the tests are clearly not independent. In fact, a comparison that draws
the training and test sets from the same sample will not be independent either.) Suppose
that in fact no real differences exist among the algorithms being tested; then the chance that
we will not get all the conclusions right — in other words, the chance that we will make at
least one mistake is

α = 1− (1 − α∗)n

Suppose for example we set our nominal significance level α∗ for each experiment to
0.05. Then the odds of making at least one mistake in our 154 experiments are α =
1− (1 − .05)154 = 0.9996. Clearly, a 99.96% chance of drawing an incorrect conclusion
is not what we want! Again, we are assuming that no true differences exist; i.e., this is a
conditional probability. (More precisely, there is a 99.96% chance that at least one of the
results will incorrectly reach “significance” at the 0.05 level.)

In order to obtain results significant at the 0.05 level with 154 tests, we need to set
1− (1 − α∗)154 ≤ 0.05, which gives α∗ ≤ 0.0003. This criterion is over 150 times more
stringent than the original α ≤ 0.05 criterion.

The above argument is still very rough, because it assumes that all the experiments are
independent of one another. When this assumption is correct, one can make the adjustment
of significance described above, which is well known in the statistics community as the Bon-
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ferroni adjustment. When experiments use identical training and/or test sets, the tests are
clearly not independent. The use of the wrong p-value makes it even more likely that some
experiments will find significance where none exists. Nonetheless, many researchers pro-
ceed with using a simple t-test to compare multiple algorithms on multiple datasets from the
UCI repository; see, e.g., Wettschereck and Dietterich (Wettschereck and Dietterich, 1995).
Although easy to conduct, the t-test is simply the wrong test for such an experimental design.
The t-test assumes that the test sets for each “treatment” (each algorithm) are independent.
When two algorithms are compared on the same data set, then obviously the test sets are not
independent, since they will share some of the same examples—assuming the training and
test sets are created by random partitioning, which is the standard practice. This problem is
widespread in comparative machine learning studies. (One of the authors of the study cited
above has written recently that the paired t-test has “a high probability of Type I error ...
and should never be used” (Dietterich, 1996).) It is worth noting here that even statisticians
have difficulty agreeing on the correct framework for hypothesis testing in complex exper-
imental designs. For example, the whole framework of using alpha levels and p-values has
been questioned when more than two hypotheses are under consideration (Reftery, 1995).

3.1. Alternative statistical tests

One obvious problem with the experimental design cited above is that it only considers
overall accuracy on a test set. But when using a common test set to compare two algorithms,
a comparison must consider four numbers: the number of examples that Algorithm A got
right and B got wrong (A > B), the number that B got right and A got wrong (B > A),
the number that both algorithms got right, and the number that both got wrong. If one has
just two algorithms to compare, then a simple but much improved (over the t-test) way to
compare them is to compare the percentage of times A > B versus B > A, and throw out
the ties. One can then use a simple binomial test for the comparison, with the Bonferroni
adjustment for multiple tests. An alternative is to use random, distinct samples of the data
to test each algorithm, and to use an analysis of variance (ANOVA) to compare the results.

A simple example shows how a binomial test can be used to compare two algorithms. As
above, measure each algorithm’s answer on a series of test examples. Let n be the number
of examples for which the algorithms produce different output. We must assume this series
of tests is independent; i.e., we are observing a set of Bernoulli trials. (This assumption is
valid if the test data is a randomly drawn sample from the population.) Let s (successes)
be the number of times A > B, and f (failures) be the number of times B > A. If the two
algorithms perform equally well, then the expected value E(s) = 0.5n = E(f). Suppose
that s > f , so it looks like A is better than B. We would like to calculate

P (s ≥ observed value|p(success) = 0.5)

which is the probability that A “wins” over B at least as many times as observed in the
experiment. Typically, the reported p-value is double this value because a 2-sided test
is used. This can be easily computed using the binomial distribution, which gives the
probability of s successes in n trials as

n!
s!(n− s)!

psqn−s
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If we expect no differences between the algorithms, then p = q = 0.5. Suppose that we
had n = 50 examples for which the algorithms differed, and in s = 35 cases algorithm A
was correct while B was wrong. Then we can compute the probability of this result as

50∑
s=35

n!
s!(n− s)!

(0 .5)n = 0.0032

Thus it is highly unlikely that the algorithms have the same accuracy; we can reject the null
hypothesis with high confidence. (Note: the computation here uses the binomial distribu-
tion, which is exact. Another, nearly identical form of this test is known as McNemar’s test
(Everitt, 1977), which uses the χ2 distribution. The statistic used for the McNemar test is
(|s− f | − 1)2/(s + f), which is simpler to compute.) If we make this into a 2-sided test,
we must double the probability to 0.0064, but we can still reject the null hypothesis. If we
had observed s = 30, then the probability would rise to 0.1012 (for the one-sided test), or
just over 10%. In this case we might say that we cannot reject the null hypothesis; in other
words, the algorithms may in fact be equally accurate for this population.

The above is just an example, and is not meant to cover all comparative studies. The
method applies as well to classifiers as to other data mining methods that attempt to extract
patterns from a database. However, the binomial test is a relatively weak test that does
not handle quantitative differences between algorithms, nor does it handle more than two
algorithms, nor does it consider the frequency of agreement between two algorithms. If N
is the number of agreements andN >> n, then it can be argued that our belief that the algo-
rithms are doing the same thing should increase regardless of the pattern of disagreement.
As pointed out by Feelders and Verkooijen (1995), finding the proper statistical procedure to
compare two or more classification algorithms can be quite difficult, and requires more than
an introductory level knowledge of statistics. A good general reference for experimental
design is Cochran and Cox (1957), and descriptions of ANOVA and experimental design
can be found in introductory texts such as Hildebrand (1986).

Jensen (Jensen, 1991, Jensen, 1995) discusses a framework for experimental comparison
of classifiers and addresses significance testing, and Cohen and Jensen (1997) discuss some
specific ways to remove optimistic statistical bias from such experiments. One important in-
novation they discuss is randomization testing, in which one derives a reference distribution
as follows. For each trial, the data set is copied and class labels are replaced with random
class labels. Then an algorithm is used to find the most accurate classifier it can, using the
same methodology that is used with the original data. Any estimate of accuracy greater
than random for the copied data reflects the bias in the methodology, and this reference
distribution can then be used to adjust the estimates on the real data.

3.2. Community experiments: Cautionary Notes

In fact, the problem in the machine learning community is worse than stated above, because
many people are sharing a small repository of datasets and repeatedly using those same
datasets for experiments. Thus there is a substantial danger that published results, even
when using strict significance criteria and the appropriate significance tests, will be mere
accidents of chance. The problem is as follows. Suppose that 100 different people are
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studying the effects of algorithms A and B, trying to determine which one is better. Suppose
that in fact both have the same mean accuracy (on some very large population of datasets),
although the algorithms vary randomly in their performance on specific datasets. Now, if
100 people are studying the effect of algorithms A and B, we would expect that five of
them will get results that are statistically significant at the p ≤ 0.05 level, and one will get
significance at the 0.01 level! (Actually, the picture is a bit more complicated, since this
assumes the 100 experiments are independent.) Clearly in this case these results are due to
chance, but if the 100 people are working separately, the ones who get significant results will
publish, while the others will simply move on to other experiments. Denton (1985) made
similar observations about how the reviewing and publication process can skew results.
Although the data mining community is much broader than the classification community, it
is likely that benchmark databases will emerge, and that different researchers will test their
mining techniques on them. The experience of the machine learning community should
serve as a cautionary tale.

In other communities (e.g., testing new drugs), experimenters try to deal with this phe-
nomenon of “community experiments” by duplicating results. Proper duplication requires
drawing a new random sample from the population and repeating the study. However, this
is not what happens with benchmark databases, which normally are static. If someone
wants to duplicate results, they can only re-run the algorithms with the same parameters
on the same data, and of course the results will be the same. Using a different partitioning
of the data into training and test sets does not help; duplication can only work if new data
becomes available.

3.3. Repeated tuning

Another very substantial problem with reporting significance results based on computa-
tional experiments is something that is often left unstated: many researchers “tune” their
algorithms repeatedly in order to make them perform optimally on at least some datasets.
At the very least, when a system is being developed, the developer spends a great deal of
time determining what parameters it should have and what the optimal values should be.
For example, the back propagation algorithm has a learning rate and a momentum term
that greatly affect learning, and the architecture of a neural net (which has many degrees of
freedom) has an enormous effect on learning. Equally important for many problems is the
representation of the data, which may vary from one study to the next even when the same
basic dataset is used. For example, numeric values are sometimes converted to a discrete
set of intervals, especially when using decision tree algorithms (Fayyad and Irani, 1993).

Whenever tuning takes place, every adjustment should really be considered a separate
experiment. For example, if one attempts 10 different combinations of parameters, then
significance levels (p-values) would have to be, e.g., 0.005 in order to obtain levels com-
parable to a single experiment using a level of 0.05. (This assumes, unrealistically, that
the experiments are independent.) But few if any experimenters keep careful count of how
many adjustments they consider. (Kibler and Langley (1988) and Aha (1992) suggest, as
an alternative, that the parameter settings themselves be studied as independent variables,
and that their effects be measured on artificial data. A greater problem occurs when one
uses an algorithm that has been used before: that algorithm may already have been tuned
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on public databases. Therefore one cannot even know how much tuning took place, and
any attempt to claim significant results on known data is simply not valid.

Fortunately, one can perform virtually unlimited tuning without corrupting the validity
of the results. The solution is to use cross validation3 entirely within the training set itself.
The recommended procedure is to reserve a portion of the training set as a “tuning” set,
and to repeatedly test the algorithm and adjust its parameters on the tuning set. When the
parameters appear to be at their optimal settings, accuracy can finally be measured on the
test data.

Thus, when doing comparative evaluations, everything that is done to modify or prepare
the algorithms must be done in advance of seeing the test data. This point will seem obvious
to many experimental researchers, but the fact is that papers are still appearing in which this
methodology is not followed. In the survey by Flexer (1996), only 3 out of 43 experimental
papers in leading neural network journals used a separate data set for parameter tuning;
the remaining 40 papers either did not explain how they adjusted parameters or else did
their adjustments after using the test set. Thus this point is worth stating explicitly: any
tweaking or modifying of code, any decisions about experimental design, and any other
parameters that may affect performance must be fixed before the experimenter has the test
data. Otherwise the conclusions might not even be valid for the data being used, much less
any larger population of problems.

3.4. Generalizing results

A common methodological approach in recent comparative studies is to pick several datasets
from the UCI repository (or some other public source of data) and perform a series of
experiments, measuring classification accuracy, learning rates, and perhaps other criteria.
Whether or not the choice of datasets is random, the use of such experiments to make more
general statements about classification algorithms is not necessarily valid.

In fact, if one draws samples from a population to conduct an experiment, any infer-
ences one makes can only be applied to the original population, which in this case means
the UCI repository itself. It is not valid to make general statements about other datasets.
The only way this might be valid would be if the UCI repository were known to repre-
sent a larger population of classification problems. In fact, though, as argued persuasively
by Holte (Holte, 1993) and others, the UCI repository is a very limited sample of prob-
lems, many of which are quite easy for a classifier. (Many of them may represent the
same concept class, for example many might be almost linearly separable, as suggested by
the strong performance of the perceptron algorithm in one well-known comparative study
(Shavlik, Mooney and Towell, 1991).) Thus the evidence is strong that results on the UCI
datasets do not apply to all classification problems, and the repository is not an unbiased
“sample” of classification problems.

This is not by any means to say that the UCI repository should not exist. The repository
serves several important functions. Having a public repository keeps the community honest,
in the sense that any published results can be checked. A second function is that any new
idea can be “vetted” against the repository as a way of checking it for plausibility. If it works
well, it might be worth further investigation. If not, of course it may still be a good idea,
but the creator will have to think up other means to demonstrate its feasibility. The dangers
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of repeated re-use of the same data should spur the research community to continually
enlarge the repository, so that over time it will become more representative of classification
problems in general. In addition, the use of artificial data should always be considered as
a way to test more precisely the strengths and weaknesses of a new algorithm. The data
mining community must likewise be vigilant not to come to rely too heavily on any standard
set of databases.

There is a second, related problem with making broad statements based on results from
a common repository of data. The problem is that someone can write an algorithm that
works well on some of these datasets specifically; i.e., the algorithm is designed with the
datasets in mind. If researchers become familiar with the datasets, they are likely to be
biased when developing new algorithms, even if they do not consciously attempt to tailor
their algorithms to the data. In other words, people will be inclined to consider problems
such as missing data or outliers because they know these are problems represented in the
public datasets. However, these problems may not be important for different datasets. It is
an unavoidable fact that anyone familiar with the data may be biased.

3.5. A recommended approach

Although it is probably impossible to describe a methodology that will serve as a “recipe” for
all comparisons of computational methods, here is an approach that will allow the designer
of a new algorithm to establish the new algorithm’s comparative merits.

1. Choose other algorithms to include in the comparison. Make sure to include the algo-
rithm that is most similar to the new algorithm.

2. Choose a benchmark data set that illustrates the strengths of the new algorithm. For
example, if the algorithm is supposed to handle large attribute spaces, choose a data set
with a large number of attributes.

3. Divide the data set intok subsets for cross validation. A typical experiment usesk = 10,
though other values may be chosen depending on the data set size. For a small data set,
it may be better to choose larger k, since this leaves more examples in the training set.

4. Run a cross-validation as follows.

(A) For each of the k subsets of the data set D, create a training set T = D − k.
(B) Divide each training set into two smaller subsets, T1 and T2. T1 will be used

for training, and T2 for tuning. The purpose of T2 is to allow the experimenter
to adjust all the parameters of his algorithm. This methodology also forces the
experimenter to be more explicit about what those parameters are.

(C) Once the parameters are optimized, re-run training on the larger set T .
(D) Finally, measure accuracy on k.
(E) Overall accuracy is averaged across all k partitions. These k values also give an

estimate of the variance of the algorithms.

5. To compare algorithms, use the binomial test described in section 3.1, or the McNemar
variant on that test.

(It may be tempting, because it is easy to do with powerful computers, to run many cross
validations on the same data set, and report each cross validation as a single trial. However,
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this would not produce valid statistics, because the trials in such a design are highly inter-
dependent.) The above procedure applies to a single data set. If an experimenter wishes to
compare multiple data sets, then the significance levels used should be increased using the
Bonferroni adjustment. This is a conservative adjustment that will tend to miss significance
in some cases, but it enforces a high standard for reporting that one algorithm is better than
another.

4. Conclusion

As some researchers have recently observed, no single classification algorithm is the best
for all problems. The same observation can be made for data mining: no single technique
is likely to work best on all databases. Recent theoretical work has shown that, with certain
assumptions, no classifier is always better than another one (Wolpert, 1992). However,
experimental science is concerned with data that occurs in the real world, and it is not
clear that these theoretical limitations are relevant. Comparative studies typically include
at least one new algorithm and several known methods; these studies must be very careful
about their methods and their claims. The point of this paper is not to discourage empirical
comparisons; clearly, comparisons and benchmarks are an important, central component
of experimental computer science, and can be very powerful if done correctly. Rather,
this paper’s goal is to help experimental researchers steer clear of problems in designing a
comparative study.
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Notes

1. This study was never published; a similar study is (Kohavi and Sommerfield, 1995), which used 22 data sets
and 4 algorithms.

2. A p-value is simply the probability that a result occurred by chance. Thus a p-value of 0.05 indicates that there
was a 5% probability that the observed results were merely random variation of some kind, and do not indicate
a true difference between the treatments. For a description of how to perform a paired t-test, see reference
(Hilderbrand, 1986) or another introductory statistics text.

3. Cross validation refers to a widely used experimental testing procedure. The idea is to break a data set up into
k disjoint subsets of approximately equal size. Then one performs k experiments, where for each experiment
the kth subset is removed, the system is trained on the remaining data, and then the trained system is tested on
the held-out subset. At the end of this k-fold cross validation, every example has been used in a test set exactly
once. This procedure has the advantage that all the test sets are independent. However, the training sets are
clearly not independent, since they overlap each other substantially. The limiting case is to set k = n − 1,
where n is the size of the entire data set. This form of cross validation is sometimes called “leave one out.”
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