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Abstract. One of the more well-studied problems in data mining is the search for association rules in market
basket data. Association rules are intended to identify patterns of the type: “A customer purchasing itemA often
also purchases itemB.” Motivated partly by the goal of generalizing beyond market basket data and partly by the
goal of ironing out some problems in the definition of association rules, we develop the notion ofdependence rules
that identify statistical dependence in both the presence and absence of items in itemsets. We propose measuring
significance of dependence via the chi-squared test for independence from classical statistics. This leads to a
measure that is upward-closed in the itemset lattice, enabling us to reduce the mining problem to the search for
a border between dependent and independent itemsets in the lattice. We develop pruning strategies based on the
closure property and thereby devise an efficient algorithm for discovering dependence rules. We demonstrate our
algorithm’s effectiveness by testing it on census data, text data (wherein we seek term dependence), and synthetic
data.
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1. Introduction

One particularly well-studied problem in data mining is thesearch for association rules in
market basket data (Agrawal et al., 1993a, Agrawal et al., 1993b, Klemettinen et al., 1994,
Mannila et al., 1994, Agrawal and Srikant, 1994, Han and Fu, 1995, Houtsma and Swami, 1995,
Park et al., 1995, Srikant and Agrawal, 1995, Savasere et al., 1995, Agrawal et al., 1996,
Toivonen, 1996). In this setting, the base information consists of register transactions
of retail stores. The goal is to discover buying patterns such as two or more items that are
bought together often.1 The market basket problem has received a great deal of attention in
the recent past, partly due to its apparent utility and partly due to the research challenges
it presents. The past research has emphasized techniques for improving the performance
of algorithms for discovering association rules in large databases of sales information.
There has also been some work on extending this paradigm to numeric and geometric
data (Fukuda et al., 1996a, Fukuda et al., 1996b).
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While Piatetsky-Shapiro and Frawley (Piatetsky and Frawley, 1991) define anassociation
problemas the general problem of finding recurring patterns in data,much of the recent
work on mining of large-scale databases has concerned the important special case of finding
association rules. Association rules, explained below, are primarily intended to identify
rules of the type, “A customer purchasing itemA is likely to also purchase itemB.” In
general, the development of ideas has been closely linked tothe notion of associations
expressed via the customer preference example.

Our work is motivated partly by the goal of generalizing beyond market basket data,
and partly by the goal of ironing out some problems in the definition of association rules.
We develop techniques to mine generalized baskets, which are defined to be a collection
of subsets from an item space, such as a corpus of text documents (where the items are
words) or census data (where the items are boolean or numericanswers to questions). In
this more general setting, association rules are but one of the many types of recurring
patterns that could or should be identified by data mining. Consequently, we develop the
notion of mining rules that identify dependencies (generalizing associations) taking into
consideration both the presence and theabsenceof items as a basis for generating rules.

To give a concrete example, Mosteller and Wallace (Mosteller and Wallace, 1964) studied
dependencies in text data to determine the authorship of each essay in theFederalist Papers.
This collection of essays was written in the late 1700s by John Jay, Alexander Hamilton,
and James Madison, but the essays were all signed “Publius.”Mosteller and Wallace
studied the writing style of each essay to determine authorship. One factor they looked at
was word co-occurrence, which is best measured by correlation. In fact, the tests they ran
in 1964 are similar to the dependence tests we run on text datain Section 6.

The remainder of this section is organized as follows. In order to place our work in the
context of earlier work, in Section 1.1 we review some of the details of the past work on
association rules in the market basket application. Then, in Section 1.2, we point out some
problems in the current definition of association rules and demonstrate that dependence
rules often are better at capturing the patterns that are being sought after in the definition
of association rules. Finally, we give an overview of the rest of this paper in Section 1.3.

1.1. Association Rules

We briefly review some of the details of the past work on association rules in market basket
data. For this purpose, we definebasket datain general terms.

Definition 1. Let I = fi1; : : : ; ikg be a set ofk elements, calleditems. Then,basket
dataB = fb1; : : : ; bng is any collection ofn subsets ofI , and each subsetbi � I is called
a basketof items.

For example, in themarket basketapplication, the setI consists of the items stocked by
a retail outlet and each basket is the set of purchases from one register transaction; on the
other hand, in thedocument basketapplication, the setI contains all dictionary words and
proper nouns, while each basket is a single document in the corpus (for now we ignore the
frequency and ordering of the words in a document).



3

While it is clear that the simple notion of basket data is powerful and captures a wide
variety of settings amenable to data mining, it should be kept in mind that there could
be structure in the data (e.g., word ordering within documents) that is lost in this general
framework.

An association rule (Agrawal et al., 1993a) in the databaseB is defined as follows.

Definition 2. We say there is anassociation rulei1 ) i2 if

1. i1 andi2 occur together in at leasts% of then baskets (thesupport);

2. and, of all the baskets containingi1, at leastc% also containi2 (theconfidence).

This definition extends easily toI ) J , whereI andJ are disjoint sets of items instead of
single items. Since it is possible to have alternate definitions of association rules, we will
henceforth refer to the above definition as thesupport-confidenceframeworkfor association
rules. It should be noted that the symbol) is a bit misleading since such a rule does not
correspond to real implications; clearly, the confidence measure is merely an estimate of
theconditional probabilityof i2 giveni1.

Consider applying the above definition to market basket datafrom a grocery store.
Association rules are then statements of the form: “When people buy tea, they also often
buy coffee.” In practice, such rules may be used to make a marketing campaign effective
or to justify changing product placement in the store. The confidence statistic ensures that
“often” is a large enough percentage of the people who buy teato be potentially interesting.
The support statistic, on the other hand, justifies financingthe marketing campaign or
product placement — these products generate enough sales tobe worthy of attention.
Support is also used to help ensure statistical significance, because if items are rare, the
variance of the confidence statistic may be too large to draw any useful conclusions.

1.2. A Critique of Association Rules

Association rules, and the support-confidence framework used to mine them, are well-
suited to the market basket problem. Other basket data problems, while seemingly similar,
have requirements that the support-confidence framework does not address. For instance,
testing the associationbatteries) cat food could not discover a fact such as, “When
people buy batteries, they do not usually also buy cat food”;finding such negative im-
plications requires a separate test. While perhaps not as useful to the marketing staff of
supermarkets, such implications can be helpful in many other settings. For example, fire
code inspectors trying to mine useful fire prevention measures might like to know of any
negative dependence between certain types of electrical wiring and the occurrence of fires.

A more serious problem with the support-confidence framework is illustrated in the
following example.

Example 1 Suppose we have market basket data from a grocery store, consisting of n
baskets. Let us focus on the purchase of tea and coffee. In thefollowing table,x represents
the presence of an item,x its absence, and the numbers represent percentages of baskets.



4 tea tea row-sumcoffee 20 70 90coffee 5 5 10
col-sum 25 75 100

Let us apply the support-confidence framework to the potential association ruletea )coffee. The support for this rule is20%, which is quite high. Letp(x) be the probability
that the itemsx appear in a random basket. Consider the customer purchasinga basket
chosen uniformly at random from then baskets. Then, confidence is effectively the
conditional probability that the customer buys coffee, given that she buys tea, i.e.,p(tea^coffee)=p(tea) = 20=25 = 0:8 or 80%, which too is pretty high. At this point, we may
conclude that the ruletea) coffee is interesting and useful.

However, consider now the fact that the a priori probabilitythat the customer buys coffee
is 90%. In other words, a customer who is known to buy tea is less likely to buy coffee
(by 10%) than a customer about whom we have no information. Of course, it may still be
interesting to know that such a large number of people who buytea also buy coffee, but
stating that rule by itself is at best incomplete information and at worst misleading. The
truth here is that there is anegativedependence between buying tea and buying coffee; at
least that information should be provided along with the association ruletea) coffee.

One way of measuring the dependence betweentea andcoffee is to computep(tea ^ coffee)=(p(tea)� p(coffee)) = 0:2=(0:25� 0:9) = 0:89:
The fact that this quantity is less than 1 indicates negativedependence,since the numerator is
the actual likelihood of seeing a customer purchase both teaand coffee, and the denominator
is what the likelihood would have been in the case where the two purchases completely
independent. On the other hand,p(tea ^ coffee)=(p(tea)� p(coffee)) = 0:05=(0:25� 0:10) = 2:00;
indicating a strong positive dependence between the absence of coffee and the presence of
tea. (Note that, by contrast, the confidence in the association rulecoffee) tea is only0:05=0:10 = 50%, much lower than the confidence in thetea) coffee rule.)

If further analysis found that the dependence betweencoffee andteawere statistically
significant, we could claim the dependence rule, “The purchase ofcoffee andtea are
dependent.” Furthermore, we could say, “The major dependence is a positive dependence
between the absence ofcoffee and the occurrence oftea.” As a result, the store manager
may decide to target non-coffee drinkers in his tea displays. 2

If the coffee and tea example seems a bit contrived, considerRussian politicians. Suppose
we wish to explore Russian photographs in order to understand power politics in the
Kremlin. We can posit that if two people often appear together in photographs, they are
allied. Then the items are Russian political figures, and each basket consists of a list of
figures in one photograph. It is reasonable to suppose that the Prime Minister appears in90% of all photographs and the Defense Minister in25%. These percentages could well
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break down exactly as in the coffee and tea example, and the same kinds of potentially
misleading association rules would result.

In the coffee and tea example, we deduced a dependence, but itis not clear whether our
deduction was statistically significant. Testing for significant dependence is a problem that
statisticians have been studying for over a century; refer to Lancaster (Lancaster, 1969)
for the theory and a history of this problem. A standard test of independence involves the
chi-squared statistic, which is both easy to calculate and reliable under a fairly permissive
set of assumptions. This test is useful because it not only detects dependence but can
distinguish positive dependence (as in the tea and coffee example) and negative dependence
(as in the fire code example).

1.3. Overview of Paper

In the following sections, we show how dependence can be usedas a basis for mining
general basket data. We use the chi-squared measure in placeof the support-confidence
framework to generate what we calldependence ruleswhich overcome the problems with
association rules discussed above. Furthermore, we demonstrate how dependence rules
can be computed efficiently.

We begin in Section 2 with some preliminary definitions and notation. Our definition of
dependence rules is presented in Section 3. We show that the set of dependence rules is
upward-closed in the lattice of subsets of the item space, enabling us to reduce the mining
problem to the search for a border between dependent and independent itemsets in the
lattice. In Section 4 we propose that the chi-squared test from classical statistics be used
to measure the significance of dependence rules. We also define a measure of interest for a
dependence rule. Our framework is contrasted with the support-confidence framework for
association rules and we argue that there are several advantages to using our framework.
We also comment on some limitations of our approach.

Based on the upward-closure property of dependence rules, and some pruning strategies
we develop, in Section 5 we present efficient algorithms for the discovery of dependence
rules. In Section 6 we demonstrate the effectiveness of our algorithms by experiments
on census data and finding term dependency in a corpus of text documents. Finally, in
Section 7 we make concluding remarks. Appendix A gives some of the theoretical basis
for the chi-squared test in statistics.

2. Preliminaries

In Section 1.1 we defined basket data in terms of a collection of baskets, where each basket
was a set of items. It will be convenient to also have an alternate view of basket data in
terms of the boolean indicator variables for items, as follows.

Definition 3. Let I1; : : : ; Ik be a set ofk boolean variables calledattributes. Then, a
set of basketsB = fb1; : : : ; bng is a collection ofn k-tuples fromftrue; falsegk which
represent a collection of value assignments to thek attributes.
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Assigning a true value (true) to an attribute variableIj represents the presence of itemij . A k-tuple fromftrue; falsegk denotes the set of items present in a basket in the
obvious way.

We adopt the following notational convention with regard toan attribute variableA
representing some itema. The eventa denotesA = true, or, equivalently, the presence
of the corresponding itema in a basket. The complementary eventa denotesA = false,
or the absence of the itema from a basket. There is an overloading of notation in that
lower-case letters are used to represent both items and the event that the item is present in a
basket, but the meaning will always be clear from the context; on the other hand, upper-case
letters will always represent variables corresponding to items. Finally, we will usex andy to refer to events that could be either positive or negative,unlikea andb which refer to
purely positive events.

Definition 4. We definep(a) = P [A = true] to be the probability that itema appears
in a random basket. Likewise,p(a) = P [A = false] = 1 � p(a). Joint probability
is defined in a similar way. For instance,p(ab) = P [A = true; B = false] is the
probability that itema is present while itemb is absent.

Note that the probability space underlying these definitions is some hypothetical space
from which the baskets are assumed to have been drawn and whose structure is desired to
be captured via either association rules or dependence rules.

We define independence and dependence of events and variables.

Definition 5.

1. Two eventsx andy areindependentif P [x ^ y] = P [x]P [y].
2. Two variablesA andB areindependentif P [A = va ^B = vb] = P [A = va]P [B =vb] for all possible valuesva; vb 2 ftrue; falseg.
3. Events, or variables, that are not independent aredependent.

The definition of independence extends in the obvious way to the independence of three or
more events or variables. Note that the test fork-way independence of variables involves2k combinations of event independence. Finally, observe thatthe independence of two
variablesA andB implies the independence of the eventsa andb (as well asa andb, etc.),
but the converse is not true in general.

We now briefly discuss how we estimate event probabilities for the market basket problem.
If we haven baskets, letOn(a) be the number of baskets that include itema. Likewise,On(a) is the number of baskets not includinga. We estimatep(a) byOn(a)=n. This is the
maximum likelihood estimate ofp(a), which is a standard estimate used in the statistics
and data mining community. An alternate approach, based on Bayesian techniques, would
be to start with a prior value ofp(a) and modify it based onOn(a) andn.
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3. Dependence Rules

The definition of dependence is all that is needed to define dependence rules.

Definition 6. Let I be a set of attribute variables. We say that the setI is adependence
rule if I is dependent.

This definition is simple but powerful. Part of its power comes from the fact thatI also
includes2jIj possible patterns of event dependence.

In Section 4 we talk about techniques both for determining ifI is dependent, and for
measuring the power of its dependence. We also discuss how tomeasure the relative power
of the various patterns of event dependence aggregated intoa dependence rule. But first,
in the rest of this section, we identify some crucial properties of dependence that hold
regardless of how dependence is determined or measured.

3.1. The Closure Property

An important feature of our definition is that the property ofbeing dependent is upward-
closed in the lattice of itemsets, where the notion of upward-closure is defined as follows.

Definition 7. Consider the latticeL of all possible itemsets from the universe of itemsI . A propertyP is said to beupward-closedwith respect to the latticeL if for every set
with propertyP , all its supersets also have propertyP . Similarly, propertyP is said to be
downward-closedif for every set with propertyP , all its subsets also have propertyP .

We now prove that our notion of dependence rules forms an upward-closed property.Theorem 1 If a set of variablesI is dependent, so is every superset ofI .

Proof: If a set of variables is dependent, then some set of events associated with the
variables must also be dependent. Suppose, without loss of generality, that the variables
areA andB and that the eventsa andb are dependent. Assume, then, that some supersetABC is independent. Then all events associated withABC must be independent. In
particular, we must havep(abc) = p(a)p(b)p(c) and p(abc) = p(a)p(b)p(c). Thenp(ab) = p(abc) + p(abc) = p(a)p(b)p(c) + p(a)p(b)p(c) = p(a)p(b). Thus,a andb are
independent after all, contrary to our hypothesis, soABC must actually be dependent.

In Section 4 we will propose using the�2 test for independence to identify dependence
rules. We show in Appendix A that the�2 statistic is also upward-closed. That is, if a setI of items is deemed dependent at significance level�, all supersetsI are also dependent
at significance level�. The proof is considerably helped by the fact that, if all variables
are boolean, the degrees of freedom for the chi-squared testis 1 regardless of the number
of variables.
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Definition 8. If an itemsetI is dependent but no subset ofI is dependent, we sayI is
minimally dependent.

To understand the significance of closure, let us examine howmining for association rules
is implemented. Using the support-confidence test, the problem is usually divided into two
parts: First finding supported itemsets, and then discovering rules in those itemsets that
have large confidence. Almost all research has focused on thefirst of these tasks. One
reason is that finding support is usually the more expensive step, but another reason is that
rule discovery does not lend itself as well to clever algorithms. This is because confidence
possesses no closure property. Support, on the other hand, is downward-closed: If a set of
items has support, then all its subsets also have support.

Researchers have taken advantage of the downward-closure of support in devising ef-
ficient algorithms for association rules. Level-wise algorithms (Agrawal et al., 1993a)
operate level-by-level, bottom-up, in the itemset lattice. At the ith level of the lattice, all
itemsets are of sizei and are calledi-itemsets. The level-wise algorithms start with alli-itemsets satisfying a given property, and use this knowledge to explore(i+ 1)-itemsets.
Another class of algorithms, random walk algorithms (Gunopulos et al., 1997), generate a
series of random walks, each of which explores the local structure of the border. A random
walk is a walk up the itemset lattice. It starts with the emptyitemset and adds items one
at a time to form a larger itemset. It is also possible to walk down the itemset lattice by
deleting items from an initial, full itemset. Both level-wise and random walk algorithms
use the closure property to make inferences about the supersets of an itemset.

It is clear that the upward- and downward-closure are two faces of the same coin. In
particular, if a propertyP is upward-closed, then not having the property is downward-
closed. Thus, an upward-closed property could be turned into a downward-closed property
by “turning the lattice upside-down.” However, if there aretwo or more conditions that
itemsets need to satisfy, some upward-closed and others downward-closed, then it might be
necessary to simultaneously deal with both forms of closure. In this case, turning the lattice
upside-down does not really change anything. We briefly discuss the slightly different ways
in which we can exploit the two kinds of closure properties tospeed up an algorithm.

Downward-closure is apruning property. That is, it is capable of identifying objects
thatcannothave a property of interest. To use it, we start out with all(i + 1)-itemsets as
candidates for being, say, supported. As we examinei-itemsets, we cross out some(i+1)-
itemsets that we know cannot have support. We are, in effect,using the contrapositive of
the support definition, saying, “If any subset of an(i + 1)-itemset does not have support,
then neither can the(i + 1)-itemset.” After crossing out some items, we go through the
remaining list, checking each(i+1)-itemset to make sure it actually does have the needed
support.

Upward-closure, on the other hand, isconstructive, in that it identifies objects thatmust
have a property of interest. For instance, we may start with the belief that no(i+1)-itemset
is, say, dependent. Looking at ani-itemset, we can say that if it is dependent, all its
supersets are also dependent. This gives us a list of dependent (i+ 1)-itemsets. Unlike in
the pruning case, where we generate false positives ((i+1)-itemsets that do not really have
support), here we generate false negatives (ignored dependent(i + 1)-itemsets). Because
of this, upward-closure is most useful if the property we arelooking for is anunwanted
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one. Then, we are finding(i+ 1)-itemsets to prune, and all that happens if we miss some
dependent itemsets is that our pruning is less effective. Itis for this reason we concentrate
on minimal dependent itemsets, that is, itemsets that are dependent though no subset of
them is. The minimality property allows us to prune all the parents of a dependenti-itemset,
since clearly no superset of a dependent set can be minimallydependent.

3.2. The Border of Dependence

An advantage of an upward-closed property is that closure means the itemsets of interest
form aborder in the itemset lattice. That is, we can list a collection of itemsets such that
every itemset above (and including) the set in the item lattice possesses the property, while
every itemset below it does not.

Because of closure, the border encodes all the useful information about the interesting
itemsets. Therefore, we can take advantage of the border property to prune based on
dependence data as the algorithm proceeds. This time- and space-saving shortcut does not
work for confidence, which is not upward-closed. If we combine dependence with support,
we can prune using both tests simultaneously. In support-confidence, on the other hand,
confidence testing has to be a post-processing step.

To show that confidence does not form a border, we present an example where an itemset
has sufficient confidence while a superset of it does not.

Example 2 Below we summarize some possible market basket data for coffee, tea, and
doughnuts. The first table is for baskets including doughnuts, while the second is for
baskets lacking doughnuts.doughnuts tea tea row-sumcoffee 8 40 48coffee 1 2 3

col-sum 9 42 51 doughnuts tea tea row-sumcoffee 10 35 45coffee 2 2 4
col-sum 12 37 49

Observe thatp(coffee ^ doughnuts) = 0:48, p(coffee) = 0:93, so the rulecoffee ) doughnuts has confidence0:52. On the other hand,p(tea ^ coffee ^doughnuts) = 0:08,p(tea^coffee) = 0:18, so the rulecoffee;tea) doughnuts
has confidence0:44. For a reasonable confidence cutoff of0:50, coffee) doughnuts
has confidence but its supersetcoffee;tea) doughnuts does not. 2

The border property makes practical a wide range of association rule algorithms. Level-
wise algorithms can stop early if the border is low (as is often the case in practice). Random
walk algorithms hold promise, since a given walk can stop as soon as it crosses the border.
The algorithm can then do a local analysis of the border near the crossing.

4. The Chi-squared Test for Independence

LetR = fi1; i1g � � � � � fik; ikg be the Cartesian product of the event sets corresponding
to the presence or absence of items in a basket. An elementr = r1 : : : rk 2 R is a single
basket value, or an instantiation of all the variables. Eachvalue ofr denotes acell — this
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Table 1. I for a collection of census data. This set of items was formed by arbitrarily
collapsing a number of census questions into binary form.

item var name a signifies. . . a signifies. . .i0 solo-driver drives alone does not drive, carpoolsi1 few-kids male or less than 3 children 3 or more childreni2 not-veteran never served in the military military veterani3 english native speaker of English not a native speakeri4 not-citizen not a U.S. citizen U.S. citizeni5 born-US born in the U.S. born abroadi6 married married single, divorced, widowedi7 under-40 no more than 40 years old more than 40 years oldi8 male male femalei9 householder householder dependent, boarder, renter, etc.

terminology comes from viewingR as ak-dimensional table, called acontingency table.
Let O(r) denote the number of baskets falling into cellr. To test whether a given cell
is dependent, we must determine if the actual count in cellr differs sufficiently from the
expectation.

In the chi-squared test, the expected count of an event is calculated under the assumption
of independence. For a single event, we use the maximum likelihood estimatorsE(ij) =On(ij) andE(ij) = n�On(ij). For sets of events, we use the independence assumption
to calculateE(r) = n � E(r1)=n � � � � � E(rk)=n. Then the chi-squared statistic is
defined as follows:�2 =Xr2R (O(r) �E(r))2E(r) :

In short, this is a normalized deviation from expectation. Refer to Appendix A for a
discussion of the theoretical underpinnings of the chi-squared statistic which leads to the
above formula.

The chi-squared statistic as defined will specify whether all k items arek-way indepen-
dent. In order to determine whether some subset of items are dependent, for instancei1,i2, andi7, we merely restrict the range ofr to fi1; i1g � fi2; i2g � fi7; i7g.

No matter howr is restricted, the chi-squared test works as follows: Calculate the value
of the chi-squared statistic. Corresponding to this value and a degrees of freedom count
(always1, for boolean variables) is ap value.2 This value, between 0 and 1, indicates the
probability of witnessing the observed counts were the variables really independent. If this
value is low (say, less than0:05), we reject the hypothesis that the variables are independent.
We say a set of items is dependent atsignificance level� if the p value of the set is at most1� �.

To put�2 values in perspective, for ap value of0:05 with one degree of freedom, the�2
cutoff value is3:84. Thus, any set of items with a�2 value of3:84 or more is significant
at the1� 0:05 = 95% confidence level.
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Table 2. B for a collection of census data. There are actually 30370 baskets, but we show only the
first 9 entries here. Person 1, for instance, either does not drive or carpools, is male or has less than 3
children, is not a veteran, speaks English natively, and so on. Person 5 fits the same set of attributes, soO(i1; i2; i3; i4; i5; i6; i7; i8; i9) = 2.

basket items basket items basket items

1 i1 i2 i3 i5 i7 i9 4 i1 i2 i3 i5 i7 i8 7 i1 i2 i3 i5 i7 i8
2 i1 i2 i3 i7 5 i1 i2 i3 i5 i7 i9 8 i1 i2 i3 i5 i7 i8
3 i1 i2 i3 i5 i7 i8 i9 6 i1 i2 i3 i5 i7 9 i1 i3 i5 i7 i8

Example 3 Consider the census data introduced in Table 1. For this example we restrict our
attention to the nine baskets in Table 2. The contingency table formaleandhouseholder
is as follows: male male row-sumhouseholder 1 2 3householder 4 2 6

col-sum 5 4 9
NowE(householder) = O(householder) = 3, whileE(male) = O(male) = 5;
note thatE(householder) is the sum of row 1, whileE(male) is the sum of column 1.
The chi-squared value is(1� 3� 5=9)23� 5=9 + (2� 3� 4=9)23� 4=9 + (4� 6� 5=9)26� 5=9 + (2� 6� 4=9)26� 4=9= 0:267+ 0:333 + 0:133 + 0:167 = 0:900
Since0:900 is less than3:84, we do not reject the independence hypothesis at the95%
confidence level. 2

The next example, also based on census data detailed in Section 6, helps to indicate how
dependence rules may be more useful than association rules in certain settings.

Example 4 Consider the census data presented in Table 1. We focus on testing the
relationship between military service and age.3 Using the full census data, withn = 30370,
we obtain the following contingency table:under-40 under-40 row-sumnot-veteran 17918 9111 27029not-veteran 911 2430 3341

col-sum 18829 11541 30370
We can use row and column sums to obtain expected values, and we get a chi-squared value
of 2006:34, which is significant at the95% significance level. Furthermore, the largest
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contribution to the�2 value comes from the bottom-right cell, indicating that thedominant
dependence is being a veteran and being over 40. This matchesour intuition.

For comparison, let us try the support-confidence frameworkon this data, with support
at1% (i.e., count304) and confidence at50%. All possible rules pass the support test, but
only half pass the confidence test. These are� not-veteran) under-40,� not-veteran) under-40,� under-40) not-veteran, and� under-40) not-veteran.

These statements correspond to the following claims: “Manypeople who have served in
the military are over 40,” “Many people who have never servedin the military are 40 or
younger,” “Many people over 40 have never served in the military,” and “Many people 40
or younger have never served in the military.” Taken together, these statements do not carry
much useful information. A traditional way to rank the statements is to favor the one with
highest support. In this example, such a ranking leaves the first statement — the one which
the chi-squared test identified as dominant — in last place. 2

The following theorem shows that the chi-squared statisticis closed and can therefore be
used for pruning and for locating the border. It is proved in Appendix A.Theorem 2 In the binomial case, the chi-squared statistic is upward-closed.

4.1. Measures of Interest

In the last example, as indeed in the first example on coffee and tea, we wanted to find
the dependence of a given cell, in order to give a more precisecharacterization of the
dependence.

Definition 9. We define theinterest of two eventsx andy to beI(xy) = p(xy)p(x)p(y) ;
with the obvious extension to more than two events.

By consideringk events, each associated with one of thek items, we obtain the interest
of a single cell of ak-dimensional contingency table. We denote the interest of acell r
by I(r). Note that dependence rules refer to variables, and therefore an entire contingency
table, while interest applies to events and therefore a single cell of the contingency table.

In contingency table notation,I(r) = O(r)=E(r) since p(a)p(b) = E(ab)=n andp(ab) = O(ab)=n. We can show that the cell with the interest value farthest from 1
is, in some sense, the most dependent of any cell in the contingency table.



13Lemma 1 For a given contingency table, letr be the cell with interest valueI(r) maxi-
mizingjI(r) � 1j. This cell contributes most to the�2 value of the contingency table.

Proof: By definition, the deviation of the interest from 1 isjO(r)=E(r) � 1j. The cell
that maximizes this quantity also maximizesjO(r) � E(r)j=E(r), and thus maximizes(O(r) �E(r))2=E(r). This is exactly the contribution of cellr to �2.

Interest values above 1 indicate positive dependence, while those below 1 indicate neg-
ative dependence. While the absolute number is meaningless, most comparative measures
are not. For instance, if the second-highest interest valueis close to the first, then the corre-
sponding cell has almost as much dependence, though it is dangerous to try to quantify the
difference. Comparing interest values from one contingency table to interest values from
another is meaningless.

Example 5 Consider the census data from Example 4. The corresponding interest values
are under-40 under-40not-veteran 1:07 0:89not-veteran 0:44 1:91

The bottom-right cell has the most extreme interest, agreeing with the conclusion from
Example 4 based on contribution to�2. The other cell values are meaningful as well; for
instance, there is a large negative dependence (0:44) between being 40 or younger and
being a veteran.

Looking back at the raw cell counts in Example 4, we see that the cells with high interest
have low counts. Nevertheless, since the chi-squared valuefor this example is well above
the95% significance threshold, we have confidence that these interest values are statistically
significant. 2
4.2. Comparison of Interest and Correlation

While interest is simple to calculate and interpret, and is closely tied to the chi-squared test
and contingency tables, it is not the normal statistic used to measure the power of depen-
dence. Instead, thecorrelation coefficient is normally used. The correlation coefficient
of a set of items is defined to be the covariance of the items, normalized by dividing with
the product of the standard deviations of the items. This value is always between�1 and1. Because of the normalization by the standard deviations, it is possible to meaningfully
compare the correlation coefficients of different itemsets. Such comparisons using interest
measures, as we have already noted, are meaningless.

The correlation coefficient, however, is not really appropriate for dependence rules. One
major problem is that covariance is calculated as an aggregate over the range of values
of the random variables. In fact, the value of the correlation coefficient is a weighted
sum of the dependence between the events associated with itemset. Therefore, a positive
correlation coefficient near 1 indicates that eithera andb are highly dependent, ora andb
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are highly dependent, or both, but does not provide any more detailed understanding of the
dependence.

Another serious problem is that since the correlation coefficient conflates the dependence
judgments of many events, it is possible for the coefficient to be 0 even when variables are
dependent (though such a “false zero” is not possible when all variables are boolean). In
general, the correlation coefficient is useful for identifying linear functional dependence
between random variables, but is poor at capturing other kinds of dependencies or handling
the case of categorical variables.

Despite these problems with the correlation coefficient, itdoes have the advantage that it
allows us to compare disparate itemsets. Thus, the correlation coefficient could be used in
some cases to infer that the dependence rulefcoffee;teag has higher dependence than
the rulefdoughnuts;teag, although interest would be needed to identify the events that
contribute the most to each rule.

4.3. Contrast with Support-Confidence Framework

Example 4 demonstrated how the chi-squared test could be more useful than support-
confidence for a wide range of problems. We list some of the advantages of the�2-interest
framework over the support-confidence framework.

1. The use of the chi-squaredsignificance test is more solidly grounded in statistical theory.
In particular, there is no need to choose ad-hoc values of support and confidence. While
the significance level is an arbitrary value, it is not ad-hocin that its value can be chosen
in a meaningful way, with results that can be predicted and interpreted by statistical
theory.

2. The chi-squared statistic simultaneously and uniformlytakes into account all possible
combinations of the presence and absence of the various attributes being examined as
a group.

3. The interest measure is preferable as it directly captures dependence, as opposed to
confidence which considers directional implication (and treats the absence and presence
of attributes non-uniformly).

4. The experimental data suggests that using chi-squared tests combined with interest
yields results that are more in accordance with our a priori knowledge of the structure
in the data being analyzed.

4.4. Limitations of the Chi-squared Test

The chi-squared statistic is easy to calculate, which in theworld of statistics is a sure tip-off
that it is an approximation. In this case, the chi-squared test rests on the normal approx-
imation to the binomial distribution (more precisely, to the hypergeometric distribution).
This approximation breaks down when the expected values aresmall. As a rule of thumb,
Moore (Moore, 1986) recommends the use of chi-squared test only if� all cells in the contingency table have expected value greater than 1;



15� and, at least80% of the cells in the contingency table have expected value greater than
5.

For association rules, these conditions will frequently bebroken. For a typical application,jI j may be 700 whilen = 1000000. Even a contingency table with as few as 20 of the
700 possible dimensions will have over a million cells, and,as the sum of the expected cell
values is only 1 million, not all cells can have expected value greater than 1.

One solution to this problem is to only considerk-itemsets wherek � log2 n. In most
cases this is probably sufficient: it is not clear that a dependence involving dozens of items
can be easily interpreted, even if it can be constructed. An alternate solution is to use an
exact calculation for the probability, rather than the�2 approximation. The establishment
of such a formula is still, unfortunately, a research problem in the statistics community, and
more accurate approximations are prohibitively expensive.

Even in low dimensions, many contingency tables may have some cells with small counts.
For these cells, small inaccuracies in the expected count will greatly affect the�2 value.
For this reason, for cells with expectation less than 1 we reassignE(r) = O(r). This is
the most conservative course of action possible in this case, and it helps ensure that we will
not make a judgment of dependence because of the contribution of a cell with very low
support. See Section 5 for further discussion of combining�2 with support.

Finally, it is tempting to use the value of the�2 statistic to indicate the degree of
dependence. This is dangerous, because when the independence hypothesis is false, the
calculated�2 value tends to infinity as the sample size increases. While comparing�2
values within the same data set may be meaningful, comparingvalues of different data sets
will almost certainly not be.

5. Pruning-based Algorithms for Dependence Rules

As we have mentioned, finding dependence rules is equivalentto finding a border in the
itemset lattice. How big can this border be? In the worst case, when the border is in the
middle of the lattice, it is exponential in the number of items. Even in the best case the
border is at least quadratic. If there are1000 items, which is not unreasonable, finding the
entire border can be prohibitively expensive. Thus, it is necessary to provide some pruning
function that allows us to ignore “uninteresting” itemsetsin the border. This pruning
function cannot merely be a post-processing step, since this does not improve the running
time. Instead, it must prune parts of the lattice as the algorithm proceeds.

Consider the level-wise algorithms, which first determine the significant (and interesting)
nodes among the itemsets of size 2, and then considers the itemsets of size 3, and so on.
Then for the pruning criterion to be effective, it must be closed, so we can determine
potentially interesting nodes at the next level based on nodes at the current level. An
obvious pruning function fitting this criterion is support.

We need a different definition of support, however, than the one used in the support-
confidence framework, because unlike in the support-confidence framework we also seek
negative dependence. In other words, the support-confidence framework only looks at the
top-left cell in the chi-squared contingency table. We extend this definition of support as
follows:
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Definition 10. A set of itemsS hascontingency table support (CT-support)s at thep% level if at leastp% of the cells in the contingency table forS have values.
By requiring thatp be a percent, rather than an absolute number, we make our definition

of CT-support downward-closed.Theorem 3 The property of having CT-supports at thep% level is a downward-closed
property.

Proof: Suppose a set of itemsS has CT-supports at thep% level. Consider, without loss
of generality, a subsetT = S n fig. Then each cell ofT has a value equal to the sum of
two cells inS. In particular, cellI of T is equal to them sum of cellsI [ fig andI [ fig inS. Sinces is an absolute number, if either of the two cells inS has supports, so will the
cell inT . In terms of counting supported cells, the worst case is if both I [fig andI [fig
are supported. In this case, there are two supported cells inS corresponding to a single
supported cell inT , causing the number of supported cells inT to be half that ofS. But the
numberof total cells inT is half that ofS, so the percent of supported cells cannot decrease.

Note that values in the contingency table are observed values, not expected values.
One weakness of this CT-support definition is that, unlessp is larger than50%, all items

have CT-support at level 1. Thus, pruning at level 1 is never productive, and a quadratic
algorithm looms. Ifp is larger than25%, though, we can do special pruning at level 1.
Observe thatp > 0:25 means that at least two cells in the contingency table will need
supports. If neither itemi1 or i2 occurs as often ass, this amount of support is impossible:
only i1i2 could possibly have the necessary count. If there are many rare items — a similar
argument holds if there are many very common items — this pruning is quite effective.

Other pruning strategies may be used, besides support-based pruning. One possibility is
anti-support, where only rarely occurring combinations ofitems are interesting. This may
be appropriate in the fire code example mentioned in Section 1, for instance, since fires —
and the conditions leading up to them — are rare. Anti-support cannot be used with the
chi-squared test at this time, however, since the chi-squared statistic is not accurate for very
rare events. Another possible pruning method is to prune itemsets with veryhigh�2 values,
under the theory that these dependencies are probably so obvious as to be uninteresting.
Since this property is not downward-closed, it would not be effective at pruning in a level-
wise algorithm. A random walk algorithm, for instance (Gunopulos et al., 1997), might be
appropriate for this kind of pruning.

5.1. The Algorithm

Combining the chi-squared dependence rule with pruning viaCT-support, we obtain the
algorithm in Figure 1.

Definition 11. We say that an itemset issignificant if it is CT-supported and minimally
dependent.
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Algorithm Dependence Rules
Input: A chi-squared significance level �, support s, support fraction p > 0:25.
Basket data B.
Output: A collection of minimal dependent itemsets, from B.

1. For each item i 2 I , do count O(i). We can use these values to calculate any
necessary expected value, as explained in Section 4.

2. Initialize cand ;, sig ;, notsig ;.
3. For each pair of items ia; ib 2 I such that O(ia) > s and O(ib) > s, do addfia; ibg to cand.

4. notsig ;.
5. If cand is empty, then return sig and terminate.

6. For each itemset in cand, do construct the contingency table for the itemset.
If less than p percent of the cells have count s, then gotoStep 8.

7. If the �2 value for the contingency table is at least �2�, then add the itemset tosig, elseadd the itemset to notsig.

8. Continue with the next itemset in cand. If there are no more itemsets in cand,
then set cand to be the collection of all sets S such that every subset of sizejSj � 1 of S is in notsig. Goto Step 4.

Figure 1. The algorithm for determining significant (i.e., dependentand CT-supported) itemsets. It hinges on the
fact that significant itemsets at leveli + 1 are supersets of CT-supported but independent sets at leveli. Step 8
can be implemented efficiently using hashing.

The key observation is stated in the following theorem; the proof follows from the
preceding discussion.Theorem 4 An itemset at leveli + 1 can be significant only if all its subsets at leveli
have CT-support and none of its subsets at leveli are dependent.

Proof: If some subset ofI fails to have CT-support, thenI also must fail to have CT-
support, since CT-support is downward closed. If some subset of I is dependent, thenI
cannot be minimally dependent by definition.

Thus, for leveli + 1, all we need is a list of the CT-supported but independent itemsets
from level i. This list is held innotsig. The listsig, which holds the CT-supported and
dependent itemsets, is the output set of interest.

The final list iscand, which builds candidate itemsets for leveli+ 1 from thenotsig
list at leveli. Let S be a set of sizei + 1 for which every subset of sizei is in notsig.
ThenS is not ruled out by either CT-support pruning or significancepruning and is added
to cand. Oncecand has been constructed, we are done processing itemsets at level i. To
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start leveli+1, we examine each setS 2 cand to see if it actually does have the necessary
CT-support. If so, we add it to eithersig or notsig for level i + 1, depending on its�2
value.

5.2. Implementation Details and Analysis

We now specify some of the key implementation details of our algorithm and obtain bounds
on its running time.

The most expensive part of the algorithm is Step 8. We proposean implementation based
on perfect hash tables (Fredman et al., 1984, Dietzfelbinger et al., 1988). In these hash
tables, there are no collisions, and insertion, deletion, and lookup all take constant time.
The space used is linear in the size of the data. Bothnotsig andcand are stored in hash
tables. Elements ofsig can be stored in an array, or output as they are discovered andnot
stored at all.

To construct candidates forcand using hash tables, we consider each pair of elements
in notsig. SupposeA andB are itemsets innotsig. If jA [ Bj = i+ 1, A [ B might
belong incand. To test this, we consider alli� 1 remaining subsets ofA[B which have
sizei. We can test each one for inclusion innotsig in constant time. If all subsets are innotsig, we addA [ B to cand, otherwise we ignore it. The total time for this operation
isO(jnotsigj2i).

Calculation of�2, at first blush, seems to take timeO(2i) at leveli, since we need to
consider every cell in the contingency table. We can reduce the time toO(minfn; 2ig)
by storing the contingency table sparsely, that is, by not storing cells where the observed
count is 0. The problem is that cells with count 0 still contribute to the�2 value. Thus we
massage the�2 formula as follows:Xr2R (O(r) �E(r))2E(r) =Xr O(r)E(r) (O(r) � 2E(r)) +Xr E(r):
Now

Pr E(r) = n, andO(r)E(r) (O(r)� 2E(r)) is 0 if O(r) is 0. We can calculate�2 values
based only on occupied cells, and there can be at mostn of these.

One expensive operation remains. To construct the contingency table for a given itemset,
we must make a pass over the entire database. In the worst case, this requireski passes at
level i. An alternative is to make one pass over the database at each level, constructing all
the necessary contingency tables at once. We need one contingency table for each element
of cand. This requiresO(ki) space in the worst case, though pruning will reduce the space
requirements significantly. At level 2, which usually requires the most space in practice,
the space requirement ofO(k2) is probably not onerous, especially since storing an entire
2-dimensional contingency table requires only 4 words. Thetime required at leveli is, in
both cases,O(njcandj) 2 O(nki).

The preceding discussion yields the following theorem.Theorem 5 The running time of Algorithm Dependence Rules for leveli isO(njcandjminfn; 2ig+ ijnotsigj2):
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It is instructive to compare the algorithm in Figure 1 to the hash-based algorithm of Park,
Chen, and Yu (Park et al., 1995) for the support-confidence framework. Their algorithm
also uses hashing to construct a candidate setcand, which they then iterate over to verify
the results. One difference is that verification is easier intheir case, since they only need
to test support. We also need to test chi-squared values, a more expensive operation that
makes careful construction ofcand more important. Another difference is we use perfect
hashing while Park, Chen, and Yu (Park et al., 1995) allow collisions. While collisions
reduce the effectiveness of pruning, they do not affect the final result. The advantage
of allowing collisions is that the hash table may be smaller.Hashing with collisions is
necessary when the database is much larger than main memory.While we can afford
collisions when constructing the candidate set — with the result of less accurate pruning —
we need perfect hashing fornotsig. notsig grows with the dimensionality and with the
number of items. It is an open problem to modify our algorithmfor databases with many
items.

6. Experimental Results

There is a wide range of problems for which dependence rules are appropriate. In this
section, we describe the results of the experiments we performed with three different
kinds of data: boolean/numeric census data (Section 6.1), text data from newsgroups
(Section 6.2), and synthetic data (Section 6.3). While the first two are useful for illustrating
the conceptual aspect of the dependence rules, the last shows the effect of our pruning
strategies on the performance of the algorithm.

Census data, such as that in Tables 1 and 2, readily lends itself to dependence analysis.
Since the chi-squared test extends easily to non-binary data, we can analyze dependen-
cies between multiple-choice answers such as those found incensus forms.4 Even when
collapsing the census results to binary data, as we have chosen to do, we can find useful
dependencies (see Example 4).

Another important application is the analysis of text data.In this case, each basket is
a document, and each item is a word that occurs in some document. If the documents
are newspaper articles, for instance, mining may turn up twocompany names that occur
together more often than would be expected. We could then examine these two companies
and see if they are likely to merge or reach an operating agreement. Negative dependencies
may also be useful, such as the discovery that a document consisting of recipes contains
the wordfatty less often than would be expected.

6.1. Census Data

The first data set we tested was the census data set, withn = 30370 baskets andk = 10
binary items. The items are as in Table 1. We show results for both the�2-interest test
(Table 3) and the support-confidence test (Table 4). For the�2-interest test, we reportp
values as well as�2 values. Thep value associated with a�2 value is the probability that
independent variables would produce data yielding the�2 value seen (or a larger one). This
means no�2 value is significant at a level above1� p. Thus,�2 scores that are significant
at the95% significance level are exactly those withp value below0:05.



20 a b �2 p value I(ab) I(ab) I(ab) I(ab)solo-driver few-kids 37:15 0:0000 1:025 0:995 0:773 1:050solo-driver not-veteran 244:47 0:0000 0:934 1:015 1:554 0:879solo-driver english 0:94 0:3323 1:004 0:999 0:966 1:007solo-driver not-citizen 4:57 0:0325 0:901 1:022 1:007 0:998solo-driver born-US 0:05 0:8231 0:999 1:000 1:008 0:998solo-driver married 737:18 0:0000 1:574 0:874 0:807 1:042solo-driver under-40 153:11 0:0000 0:880 1:026 1:192 0:958solo-driver male 138:13 0:0000 1:155 0:966 0:866 1:029solo-driver householder 746:28 0:0000 1:404 0:912 0:722 1:061few-kids not-veteran 296:55 0:0000 0:989 1:104 1:094 0:135few-kids english 24:00 0:0000 0:997 1:030 1:026 0:759few-kids not-citizen 1:60 0:2059 1:009 0:917 0:999 1:006few-kids born-US 1:70 0:1923 0:999 1:008 1:007 0:933few-kids married 352:31 0:0000 0:939 1:562 1:021 0:811few-kids under-40 2010:07 0:0000 1:067 0:385 0:892 1:988few-kids male 2855:73 0:0000 1:109 0:000 0:906 1:863few-kids householder 229:07 0:0000 0:965 1:317 1:024 0:782not-veteran english 82:02 0:0000 0:994 1:053 1:051 0:576not-veteran not-citizen 190:71 0:0000 1:103 0:140 0:993 1:061not-veteran born-US 176:05 0:0000 0:991 1:075 1:077 0:355not-veteran married 993:31 0:0000 0:892 1:901 1:036 0:697not-veteran under-40 2006:34 0:0000 1:070 0:414 0:887 1:942not-veteran male 3099:38 0:0000 0:881 1:994 1:103 0:142not-veteran householder 819:90 0:0000 0:931 1:573 1:047 0:606english not-citizen 9130:58 0:0000 0:271 6:823 1:052 0:588english born-US 11119:28 0:0000 1:073 0:417 0:372 6:016english married 110:31 0:0000 0:963 1:294 1:012 0:901english under-40 62:22 0:0000 0:987 1:101 1:020 0:838english male 21:41 0:0000 0:990 1:081 1:009 0:930english householder 0:10 0:7518 1:001 0:994 0:999 1:004not-citizen born-US 18504:81 0:0000 0:000 1:071 9:602 0:391not-citizen married 189:66 0:0000 1:512 0:964 0:828 1:012not-citizen under-40 76:04 0:0000 1:148 0:989 0:762 1:017not-citizen male 14:48 0:0001 1:088 0:994 0:924 1:005not-citizen householder 3:27 0:0706 0:953 1:003 1:032 0:998born-US married 312:15 0:0000 0:940 1:512 1:020 0:827born-US under-40 10:62 0:0011 0:995 1:043 1:008 0:930born-US male 12:95 0:0003 0:992 1:065 1:007 0:944born-US householder 2:50 0:1138 0:996 1:032 1:003 0:978married under-40 2913:05 0:0000 0:579 1:142 1:677 0:772married male 66:49 0:0000 1:087 0:971 0:925 1:025married householder 186:28 0:0000 1:163 0:945 0:888 1:038under-40 male 98:63 0:0000 1:048 0:922 0:958 1:067under-40 householder 4285:29 0:0000 0:643 1:574 1:246 0:605male householder 12:40 0:0004 1:026 0:977 0:982 1:016
Table 3.The�2 test on census data. Bold�2 values are significant at the95% significance level. (1�p indicates
the maximum level for which this�2 value is significant.) Bold interest values are the most extreme.



21a b sa[b sa[b sa[b sa[b a) b a) b a ) b a) b b) a b) a b) a b) ai0 i1 16:6 73:6 1:4 8:5 0:92 0:90 0:08 0:10 0:18 0:82 0:14 0:86i0 i2 15:0 74:3 3:0 7:7 0:83 0:91 0:17 0:09 0:17 0:83 0:28 0:72i0 i3 16:0 72:9 1:9 9:2 0:89 0:89 0:11 0:11 0:18 0:82 0:17 0:83i0 i4 1:1 5:5 16:9 76:5 0:06 0:07 0:94 0:93 0:16 0:84 0:18 0:82i0 i5 16:1 73:5 1:9 8:5 0:90 0:90 0:10 0:10 0:18 0:82 0:18 0:82i0 i6 7:1 18:1 10:8 64:0 0:40 0:22 0:60 0:78 0:28 0:72 0:14 0:86i0 i7 9:7 51:9 8:2 30:2 0:54 0:63 0:46 0:37 0:16 0:84 0:21 0:79i0 i8 9:6 36:7 8:3 45:3 0:54 0:45 0:46 0:55 0:21 0:79 0:16 0:84i0 i9 10:3 30:5 7:7 51:6 0:57 0:37 0:43 0:63 0:25 0:75 0:13 0:87i1 i2 79:6 9:7 10:6 0:1 0:88 0:99 0:12 0:01 0:89 0:11 0:99 0:01i1 i3 79:9 9:0 10:3 0:8 0:89 0:92 0:11 0:08 0:90 0:10 0:93 0:07i1 i4 6:0 0:6 84:2 9:2 0:07 0:06 0:93 0:94 0:91 0:09 0:90 0:10i1 i5 80:7 8:9 9:5 1:0 0:90 0:90 0:10 0:10 0:90 0:10 0:91 0:09i1 i6 21:3 3:9 68:9 6:0 0:24 0:39 0:76 0:61 0:85 0:15 0:92 0:08i1 i7 59:3 2:3 30:9 7:5 0:66 0:24 0:34 0:76 0:96 0:04 0:80 0:20i1 i8 46:3 0:0 43:8 9:8 0:51 0:00 0:49 1:00 1:00 0:00 0:82 0:18i1 i9 35:5 5:3 54:7 4:6 0:39 0:54 0:61 0:46 0:87 0:13 0:92 0:08i2 i3 78:9 10:0 10:4 0:7 0:88 0:94 0:12 0:06 0:89 0:11 0:94 0:06i2 i4 6:5 0:1 82:8 10:6 0:07 0:01 0:93 0:99 0:99 0:01 0:89 0:11i2 i5 79:3 10:3 10:0 0:4 0:89 0:96 0:11 0:04 0:89 0:11 0:96 0:04i2 i6 20:1 5:1 69:2 5:6 0:22 0:48 0:78 0:52 0:80 0:20 0:93 0:07i2 i7 58:9 2:7 30:4 8:0 0:66 0:26 0:34 0:74 0:96 0:04 0:79 0:21i2 i8 36:5 9:9 52:9 0:8 0:41 0:92 0:59 0:08 0:79 0:21 0:98 0:02i2 i9 33:9 6:9 55:4 3:8 0:38 0:64 0:62 0:36 0:83 0:17 0:94 0:06i3 i4 1:6 5:0 87:3 6:1 0:02 0:45 0:98 0:55 0:24 0:76 0:93 0:07i3 i5 85:4 4:2 3:4 7:0 0:96 0:37 0:04 0:63 0:95 0:05 0:33 0:67i3 i6 21:6 3:6 67:3 7:5 0:24 0:33 0:76 0:67 0:86 0:14 0:90 0:10i3 i7 54:1 7:6 34:8 3:6 0:61 0:68 0:39 0:32 0:88 0:12 0:91 0:09i3 i8 40:8 5:6 48:1 5:6 0:46 0:50 0:54 0:50 0:88 0:12 0:90 0:10i3 i9 36:2 4:5 52:6 6:6 0:41 0:40 0:59 0:60 0:89 0:11 0:89 0:11i4 i5 0:0 89:6 6:6 3:8 0:00 0:96 1:00 0:04 0:00 1:00 0:64 0:36i4 i6 2:5 22:7 4:1 70:7 0:38 0:24 0:62 0:76 0:10 0:90 0:05 0:95i4 i7 4:7 57:0 1:9 36:4 0:71 0:61 0:29 0:39 0:08 0:92 0:05 0:95i4 i8 3:3 43:0 3:3 50:4 0:50 0:46 0:50 0:54 0:07 0:93 0:06 0:94i4 i9 2:6 38:2 4:0 55:2 0:39 0:41 0:61 0:59 0:06 0:94 0:07 0:93i5 i6 21:2 4:0 68:4 6:4 0:24 0:38 0:76 0:62 0:84 0:16 0:91 0:09i5 i7 54:9 6:7 34:6 3:7 0:61 0:64 0:39 0:36 0:89 0:11 0:90 0:10i5 i8 41:2 5:1 48:4 5:3 0:46 0:49 0:54 0:51 0:89 0:11 0:90 0:10i5 i9 36:4 4:4 53:2 6:0 0:41 0:42 0:59 0:58 0:89 0:11 0:90 0:10i6 i7 9:0 52:7 16:2 22:2 0:36 0:70 0:64 0:30 0:15 0:85 0:42 0:58i6 i8 12:7 33:6 12:5 41:2 0:50 0:45 0:50 0:55 0:27 0:73 0:23 0:77i6 i9 11:9 28:8 13:3 46:0 0:47 0:39 0:53 0:61 0:29 0:71 0:22 0:78i7 i8 29:9 16:4 31:7 22:0 0:49 0:43 0:51 0:57 0:65 0:35 0:59 0:41i7 i9 16:1 24:6 45:5 13:8 0:26 0:64 0:74 0:36 0:40 0:60 0:77 0:23i8 i9 19:4 21:4 27:0 32:3 0:42 0:40 0:58 0:60 0:48 0:52 0:45 0:55
Table 4.Support/Confidence applied to census data. Bold values in the first block correspond to support (at the1% cutoff); bold values in the second block correspond to confidence (at the0:5 cutoff) as well.
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To generate the�2 values for this data, we ran the algorithm in Figure 1 on a 90 MHz.
Pentium running Linux 1.2.13. The machine has 32 Meg. of mainmemory. The program
was written in C and compiled usinggcc with the -O6 compilation option. The entire
database fit into main memory. The program took3:6 seconds of CPU time to complete.

Let us illustrate how data mining could be performed on the results in Table 3. With
so many pairs dependent, we are immediately struck byffew-kids;not-citizeng andffew-kids;born-USg, which are not. We are even more surprised when we see thatfew-kids concerns numberof children andnot-citizen andborn-US concern markers
for immigrants. This is surprising because conventional wisdom has it that immigrants
are much more likely to have large families than native-bornAmericans. Perhaps, we
conjecture, we are led astray by the category definition, since males are lumped together
with women having few children. Perhaps it is not that immigrants have few children, but
rather that they are preponderantly male. We look at the datafor fnot-citizen;maleg
andfborn-US;maleg to explore this. These are both significant, and the interestfigures
show there is indeed a dependency between being male and being born abroad or not being a
U.S. citizen. The interest values are fairly close to 1, though, indicating the bias is not strong.
It does not seem strong enough to account for the independence we observed. A further
jarring note for our explanation is the pairffew-kids; englishg. This pair includes native
language, another marker of immigration. Butffew-kids; englishg issignificant, which
would lead us to believe immigration is dependent on family size. Furthermore,english
is just as dependent onmale as the other two markers of immigration. Perhaps, then, our
assumption thatenglish, not-citizen, andborn-US are good markers of immigration
is flawed. Table 3 gives us much to mull on.

We invite the reader to attempt a similar analysis with the support-confidence data in
Table 4. For a special challenge, ignore the last seven columns, which are not typically
mined in support-confidenceapplications. We find that it is much harder to draw interesting
conclusions about census data from the support-confidence results.

Another interesting result is thatsolo-driver andmarried are dependent, and the
strongest dependence is between being married and driving alone. Does this imply that
non-married people tend to carpool more often than married folk? Or is the data skewed
because children cannot drive and also tend not to be married? Because we have collapsed
the answers “does not drive” and “carpools,” we cannot answer this question. A non-
collapsed chi-squared table, with more than two rows and columns, could find finer-grained
dependency. Support-confidence cannot easily handle multiple item values.

The magnitude of the�2 value can also lead to fruitful mining. The highest�2 values are
for obvious dependencies, such as being born in the United States and being a U.S. citizen.
These values often have interest levels of 0, indicating an impossible event (for instance,
having given birth to more than 3 children and being male).

Results from support-confidenceframework tend to be harderto understand. Consideringborn-US andmarried, we have both the rules, “If you are born in the U.S. you are
likely to be married,” and “If you are not married you are likely to be born in the U.S.”
These two statements are not inconsistent, but they are confusing. What is more worrisome,
every pair of items has the maximum four supported rules. A good number would continue
to support three or four rules even if the confidence level were raised to75%. Someone
mining this data using support-confidence would conclude that all item pairs have all sorts
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of interesting associations, when a look at the�2 values shows that some associations
cannot be statistically justified. Furthermore, some of thepairs with the largest support and
confidence values, such asfew-kids andnot-citizen, turn out not to be dependent.

Note that, for this data set, no rule ever has adequate confidence but lacks support. This
is not surprising since we examine only itemsets at level 2, where support is plentiful.

6.2. Text Data

We analyzed 91 news articles from the clari.world.africa news hierarchy, gathered on 13
September 1996. We chose only articles with at least 200 words (not counting headers),
to filter out posts that were probably not news articles. A word was defined to be any
consecutive sequence of alphabetic characters; thus “s” asa possessive suffix would be its
own word while numbers would be ignored. To keep the experiment a reasonable size, we
pruned all words occurring in less than10% of the documents; this is a more severe type
of pruning than the special level 1 pruning discussed in Section 5. This left us with 416
distinct words.

One would expect words to be highly dependent, and indeed this turned out to be the
case. Of the

�4162 � = 86320word pairings, there were 8329 dependent pairs, i.e.,10% of all
word pairs are dependent. More than10% of all triples of words are dependent. Because
of the huge amount of data generated, thorough analysis of the results is very difficult.
We provide some anecdotal analysis, however, to give a tasteof the effectiveness of the
chi-squared test on text data.

A list of 12 dependent itemsets is presented in Table 5. We show not only the dependent
words but the major dependence in the data. We see some obvious dependencies:area
appears often withprovince, which is not surprising since the two terms are clearly related.
The largest single�2 value relatesNelson toMandela, again hardly surprising.

While some pairs of words have large�2 values, no triple has a�2 value larger than
10. Remember that we report minimal dependent itemsets, so no subset of a triple is
itself dependent. ThusBurundi, commission, andplan are 3-way dependent, thoughcommission andplan, say, are not. Since the major dependence hascommission andplan but lacksBurundi, we might suspect that there are fewer commission making
plans in Burundi than other African nations. Likewise,African, men, andNelson,
are dependent, thoughAfrican andmen alone are not, leading us to posit that articles
including Nelson Mandela might disproportionately refer to African men. Another major
dependence hasofficial andauthorities occurring without the wordblack. Could
that be because race is not mentioned when discussing authority figures, or perhaps because
non-black authority figures are given more prominence?

We include the threesomegovernment, is, andnumber because it has the highest�2
value of any triple of words. Like many of the dependent triples, of which there are well
over a million, this itemset is hard to interpret. Part of thedifficulty is due to the wordis,
which does not yield as much context as nouns and active verbs. In practice, it may make
sense to restrict the analysis to nouns and active verbs to prune away such meaningless
dependencies.

It is important to note that, with so many dependencies identified, some are bound to be
incorrect. At a95% significance level, we would expect5% of all itemsets identified as
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Table 5. Some word dependencies in the clari.world.africa news articles. Sometimes the dependencies are
suggestive, but not always; the last itemset is one of the many confusing itemsets.

dependent words �2 p value major dependence includes major dependence omits

area province 24:269 0:0000 area province
area secretary war 6:959 0:0083 area war secretary
area secretary they 7:127 0:0076 area they secretary
country men work 4:047 0:0442 country men work
deputy director 9:927 0:0016 deputy director
members minority 4:230 0:0397 members minority
authorities black official 4:366 0:0367 authorities official black
burundi commission plan 5:452 0:0195 commission plan burundi
african men nelson 5:935 0:0148 african men nelson
liberia west 48:939 0:0000 liberia west
mandela nelson 91:000 0:0000 mandela nelson
government is number 9:999 0:0016 is number government

dependent to be actually independent. The typical way to handle this problem is to raise the
significance level, based on the number of itemsets we examine, so the expected number of
misidentifications is low. When considering hundreds of thousands of itemsets, as in the
text example, this approach is not feasible.

6.3. Synthetic Data

The census data is too small, and its border too low, to study the effectiveness of the pruning
techniques. On the other hand, the text data is too big: we were forced to prune words with
low support even before starting our mining algorithm. To get data that is the appropriate
size for exploring the effectiveness of our algorithm, we turn to synthetic data from IBM’s
Quest group (Agrawal et al., 1996).

We generated market basket data with 99997 baskets and 871 items. We set the average
basket size to be 20, and the average size of large itemsets tobe 4. To generate the�2 values
for this data, we ran the algorithm in Figure 1 on a Pentium Prowith a 166 MHz. processor
running Linux 1.3.68. The machine has 64 Meg. of memory and the entire database fit into
main memory. The program took2349 seconds of CPU time to complete.

To analyze the effectiveness of the pruning, we look at several factors. One is the number
of itemsets that exist at each level, i.e., the number of itemsets we would have to examine
without pruning. The next is the size ofcand; this is the number of itemsets we actually
examine. Each itemset incand is either added tosig, added tonotsig, or discarded.
The smaller the number of items discarded, the more effective our pruning techniques. We
summarize these figures for the Quest data in Table 6.

Note that unlike with the text data, the number of dependencies at level 3 is much smaller
than the number of dependencies at level 2. Though we do not show the numbers, it is
again the case that the 3-way dependencies have much lower�2 values than the average
2-way dependence, with no 3-way dependence having�2 > 8:7. In this case, both support
and significance provide pruning, though the effect of support seems to be much more
pronounced.
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level jitemsetsj jcandj jcand discardsj jsigj jnotsigj2 378015 8019 323 4114 35823 109372340 782 647 17 1184 23706454695 0 0 0 0
Table 6. The effectiveness of pruning on reducing the number of itemsets examined. Two measures of pruning
quality are the size ofcand and the number ofcand discards. The lower these two quantities are, the better. Note
that itemsets insig would not be pruned by a support-confidence test, sojsigj is one measure of the effectiveness
of dependence pruning considered by itself.

7. Conclusions and Further Research

We have introduced a generalization of association rules, called dependence rules, that
are particularly useful in applications going beyond the standard market basket setting.
In addition, these rules have some advantages over the use ofstandard association rules.
Dependence rules seem useful for analyzing a wide range of data, and tests using the
chi-squared statistic are both effective and efficient for mining.

Our work raises many important issues for further research.First, there is the question of
identifying other measures and rule types that capture patterns in data not already captured
by association rules and dependence rules. For example, in the case of documents, it would
be useful to formulate rules that capture the spatial locality of words by paying attention to
item ordering within the basket. In addition, it would be interesting to explore the class of
measures and rules that lead to upward-closure or downward-closure in the itemset lattice,
since closure appears to be a desirable property both from the conceptual and the efficiency
points of view. We have also suggested another algorithmic idea, random walks on the
lattice, for dependence rules that may apply in other settings. It is easy to verify that a
random walk algorithm has a natural implementation in termsof a datacube of the count
values for contingency tables, and we hope to explore this connection in a later paper.

With regard to the chi-squaredtest itself, a significant problem is the increasing inaccuracy
of the chi-squaredtest as the number of cells increase. An efficient, exact test for dependence
would solve this problem, though other computational solutions may be possible. In lieu
of a solution, more research is needed into the effect of ignoring cells with low expectation.
Though ignoring such cells can skew results arbitrarily on artificially constructed data sets,
it is not clear what the impact is in practice.

Another major source of error, already mentioned in Section6.2, is involved in the
significance level cutoff. As the cutoff changes, so does thetotal number of false positives
(independent itemsets with�2 value above the cutoff) and false negatives (dependent
itemsets with�2 value below the cutoff). Further research is necessary to determine how
the optimal cutoff value varies from application to application.

Another area of research is in non-support-based pruning criteria. If these criteria are
not downward-closed, a non-level-wise algorithm will probably be necessary to keep the
computation efficient. For example, it would be interestingto experiment with the random
walk algorithm.
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All of the data we have presented have small borders because most small itemsets are
dependent. It might be fruitful to explore the behavior of data sets where the border is
exponential in the number of items.

Finally, as we mentioned in Section 5.2, our algorithm requires that all the non-significant
itemsets at a level be stored, and therefore it is not scalable to databases with many items.
This problem becomes particularly acute when the border is high, for instance when 10-
itemsets both exist and are useful for the experimenter to discover. Besides being important
from a practical point of view, further research in this areamay also yield more insight into
properties of the border and of closure. Such a result would be useful in its own right.
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Appendix A

The Theory of Chi-squared Distributions

Intuitively, the chi-squared statistic attempts to measure the degree of independence be-
tween different attributes by comparing their observed patterns of occurrence with the
expected pattern of occurrence under the assumption of complete independence and a
normal distribution on the occurrence of each attribute. Note that the normal distribution
assumption is justified for a large value ofm, as a reasonable distribution will approach
normality asymptotically.

We briefly review the theoretical justification for employing the chi-squared statistic in
this setting. This is classical work in statistics that goesback at least to the last century. Refer
to the book by Lancaster (Lancaster, 1969) for the history and theory of the chi-squared
test for independence.

Let X be a Bernoulli random variable that denotes the number of successes inN in-
dependent trials where the probability of success in any given trial is p. The expected
number of successes isNp and the variance isNp(1 � p). The classical work of de
Moivre (de Moivre, 1733) and Laplace (de Laplace, 1878) has established that the random
variable� = X�NppNp(1�p) follows the standard normal distribution. The square of this

random variable� is given by�2 = (X �Np)2Np(1� p)= (X �Np)2Np + ((N �X)�N(1� p))2N(1� p)



27= (X1 �Np)2Np + (X0 �N(1� p))2N(1� p)= (X1 �E(X1))2E(X1) + (X0 �E(X0))2E(X0) ;
whereX1 denotes the number of successes andX0 denote the number of failures in theN
trials. Note that, by definition, the�2 random variable is asymptotically distributed as the
square of a standard normal variable.

Pearson (Pearson, 1900) extended the definition to the multinomial case, whereX can
take on any value in a setU . The modified formula is�2 =Xr2U (Xr �E(Xr))2E(Xr)
and yields a�2 distribution withjU j�1 degrees of freedom (we lose one degree of freedom
due to the constraint

Pr2U Xr = N ).
We can further generalize the�2 variable to the case of multiple random variables. We

consider the binomial case, though the multinomial case extends in the expected way. LetX1; : : : ; Xk denotek independent, binomially distributed random variables. We can define
a contingency tableor count tableCT that is ak-dimensional array indexed byf0; 1gk.
Each index refers to a uniquecell of the contingency table. The cellCT (r1; : : : ; rk) in
the table is a count of the number of trials, out ofN independent trials, where the event(X1 = r1; : : : ; Xk = rk) occurs. We define the�2 value as�2 = Xr12f0;1g;:::;rk2f0;1g (CT (r1; : : : ; rk)�E(CT (r1; : : : ; rk)))2E(CT (r1; : : : ; rk))
This has 1 degree of freedom — we have two values in each row of the contingency table
and one constraint in that the row sum is fixed. In the general multinomial case, ifX i can
haveui different values, there are(u1 � 1)(u2 � 1) � � � (uk � 1) degrees of freedom.

We now prove the theorem stated in Section 4.Theorem 2 In the binomial case, the chi-squared statistic is upward-closed.

Proof: The key observation in proving this is that regarldess of thedimensionality, the
chi-squared statistic has only one degree of freedom. Thus,to show upward-closure it is
sufficient to show that if a set of items has�2 valueS, then any superset of the itemset has�2 value at leastS. We show this for itemsets of size 2, though the proof easily generalizes
to higher dimensions.

Consider variablesA, B, andC. The�2-statistic for the variablesA andB is defined as
follows:SAB = (E(AB) �O(AB))2E(AB) + (E(AB)�O(AB))2E(AB) +(E(AB)�O(AB))2E(AB) + (E(AB)�O(AB))2E(AB)
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Now, letE denote the valueE(AB) andO the valueO(AB). Definex = E(ABC) andy = E(ABC). Likewise, defineX = O(ABC) andY = O(ABC). Note thatE = x+y
andO = X +Y . Then, in the�2-statisticSABC for the tripleA,B, andC, we replace the
term (E �O)2E
in SAB by the terms(x�X)2x + (y � Y )2y :

Therefore, inSABC � SAB , we have the terms(x�X)2x + (y � Y )2y � (E �O)2E= y(x+ y)(x�X)2 + x(x + y)(y � Y )2 � xy[(x+ y)� (X + Y )]2xy(x + y)= xy(x�X)2 + xy(y � Y )2 + y2(x�X)2 + x2(y � Y )2xy(x+ y) �xy[(x�X)2 + (y � Y )2 + 2(x�X)(y � Y )]xy(x+ y)= y2(x�X)2 + x2(y � Y )2 � 2xy(x�X)(y � Y )xy(x+ y)= [y(x�X)� x(y � Y )]2xy(x + y)= (xY � yX)2xy(x+ y)
This term is never negative, implying thatSABC � SAB always.

Appendix B

The data sets used in this paper are accessible via the following URL:

http://www.research.microsoft.com/datamine

Notes

1. A classic, albeit apocryphal, example is the rule that people who buy diapers in the afternoon are particularly
likely to buy beer at the same time (Ewald, 1994).

2. Thep value can be easily calculated via formulas, or obtained from widely available tables for the chi-squared
distribution.

3. In reality we would mine this data rather than query for it.We present the material in this way in order to
compare two testing techniques, not to illustrate actual use.

4. A danger is that as the number of cells increases, problemswith accuracy of the�2 statistic increase as well.
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M.M. les secŕetaires perṕetuels, Gauthier-Villar, Paris, 1878/1912.
Mannila, H., Toivonen, H., and Inkeri Verkamo, A. 1994. Efficient algorithms for discovering association rules.

Proceedings of the AAAI Workshop on Knowledge Discovery in Databases, pp. 144–155.
de Moivre, A. 1733. Approximatio ad summam terminorum binomii (a+ b)n in seriem expansi, Supplement to

Miscellanea Analytica, London.
Moore, D.S. 1986. Tests of chi-squared type. Goodness-of-Fit Techniques, R.B. D’Agostino and M.A. Stephens

(Eds.), Marcel Dekker, New York, pp. 63–95.
Mosteller, F. and Wallace, D. 1964. Inference and Disputed Authorship: The Federalists, Addison-Wesley.
Park, J.S., Chen, M.S., and Yu, P.S. 1995. An effective hash based algorithm for mining association rules.

Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 175–186.
Pearson, K. 1900. On a criterion that a given system of deviations from the probable in the case of correlated

system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philos.
Mag., 5:157–175.

Piatetsky, G. and Frawley, W. 1991. Knowledge Discovery in Databases, AAAI/MIT Press.
Savasere, A., Omiecinski, E., and Navathe, S. 1995. An efficient algorithm for mining association rules in large

databases. Proceedings of the International Conference onVery Large Data Bases, pp. 432–444
Srikant, R. and Agrawal, R. 1995. Mining generalized association rules. Proceedings of the 21st International

Conference on Very Large Data Bases, pp. 407–419.
Toivonen, H. 1996. Sampling large databases for finding association rules. Proceedings of the 22nd International

Conference on Very Large Data Bases, pp. 134–145.



30

Craig Silverstein obtained an A.B. degree in Computer Science from Harvard University and is currently a
Ph.D. candidate in Computer Science at Stanford University. He is a recipient of a National Defense Science
and Engineering Graduate fellowship and an Achievement Awards for College Scientists fellowhip. His research
interests include information retrieval on natural language queries and discovering causality via data mining.

Sergey Brin received his B.S. degree in Mathematics and Computer Science from the University of Maryland at
College Park in 1993. Currently, he is a Ph.D. candidate in computer science at Stanford University, where he
received his M.S. in 1995. He is a recipient of a National Science Foundation Graduate Fellowship. His research
interests include data mining of large hypertext collections and time series.

Rajeev Motwani received a B.Tech. degree in Computer Science from the Indian Institute of Technology (Kanpur)
in 1983. In 1988 he obtained a Ph.D. in Computer Science from the University of California at Berkeley. Since
1988 he has been at the Computer Science Department of Stanford University, where he now serves as an
Associate Professor. He is a recipient of an Arthur P. Sloan Research Fellowship and the NSF National Young
Investigator Award from the National Science Foundation. In 1993 he received the Bergmann Memorial Award
from the US-Israel Binational Science Foundation, and in 1994 he was awarded an IBM Faculty Development
Award. He is a Fellow of the Institute of Combinatorics. Dr. Motwani is a co-author of the book Randomized
Algorithms published by Cambridge University Press in 1995. He has authored scholarly and research articles on a
variety of areas related to theoretical computer science: combinatorial optimization and scheduling theory; design
and analysis of algorithms including approximation algorithms, online algorithms and randomized algorithms;
complexity theory; computational geometry; compilers; databases; and robotics.


