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Abstract. One of the more well-studied problems in data mining is thercle for association rules in market
basket data. Association rules are intended to identifiepa of the type: “A customer purchasing itetroften

also purchases iter8.” Motivated partly by the goal of generalizing beyond matasket data and partly by the
goal of ironing out some problems in the definition of asstmierules, we develop the notion dépendence rules
that identify statistical dependence in both the presendeahsence of items in itemsets. We propose measuring
significance of dependence via the chi-squared test fopiience from classical statistics. This leads to a
measure that is upward-closed in the itemset lattice, @mabk to reduce the mining problem to the search for
a border between dependent and independent itemsets iattie.| We develop pruning strategies based on the
closure property and thereby devise an efficient algoritbndfscovering dependence rules. We demonstrate our
algorithm’s effectiveness by testing it on census datd,data (wherein we seek term dependence), and synthetic
data.
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1. Introduction

One particularly well-studied problem in data mining is #earch for association rules in
market basket data (Agrawal et al., 1993a, Agrawal et aB3b9Klemettinen et al., 1994,
Mannila et al., 1994, Agrawal and Srikant, 1994, Han and B@51Houtsma and Swami, 1995,
Park et al., 1995, Srikant and Agrawal, 1995, Savasere,et335, Agrawal et al., 1996,
Toivonen, 1996). In this setting, the base information &siesof register transactions
of retail stores. The goal is to discover buying patterndisagtwo or more items that are
bought together ofteh The market basket problem has received a great deal of iattant
the recent past, partly due to its apparent utility and pattie to the research challenges
it presents. The past research has emphasized techniquegpfoving the performance
of algorithms for discovering association rules in large¢attases of sales information.
There has also been some work on extending this paradigmrt@me and geometric
data (Fukuda et al., 1996a, Fukuda et al., 1996b).

*  Supported by the Department of Defense and an ARCS fellpwstith partial support from NSF Award
CCR-9357849, with matching funds from IBM, Mitsubishi, $chberger Foundation, Shell Foundation, and
Xerox Corporation.

* Supported by an NSF Fellowship.

T Supported by an Alfred P. Sloan Research Fellowship, an |BRUREy Partnership Award, an ARO MURI
Grant DAAH04-96-1-0007, and NSF Young Investigator Awa@R59357849, with matching funds from IBM,
Mitsubishi, Schlumberger Foundation, Shell Foundatiom Aerox Corporation.



While Piatetsky-Shapiro and Frawley (Piatetsky and Franll891) define aassociation
problemas the general problem of finding recurring patterns in daach of the recent
work on mining of large-scale databases has concerned fi@iemt special case of finding
association rules. Association rules, explained below,paimarily intended to identify
rules of the type, “A customer purchasing itefnis likely to also purchase itens.” In
general, the development of ideas has been closely linkédetmotion of associations
expressed via the customer preference example.

Our work is motivated partly by the goal of generalizing begtanarket basket data,
and partly by the goal of ironing out some problems in the dlédim of association rules.
We develop techniques to mine generalized baskets, wheckdefined to be a collection
of subsets from an item space, such as a corpus of text dodsirfvemere the items are
words) or census data (where the items are boolean or nuaresigers to questions). In
this more general setting, association rules are but ondeihtany types of recurring
patterns that could or should be identified by data miningnggguently, we develop the
notion of mining rules that identify dependencies (geneira associations) taking into
consideration both the presence anddbhsencef items as a basis for generating rules.

To give aconcrete example, Mosteller and Wallace (Mosteliel Wallace, 1964) studied
dependenciesin text data to determine the authorship bfeessay in th&ederalist Papers
This collection of essays was written in the late 1700s bynJidy, Alexander Hamilton,
and James Madison, but the essays were all signed “PubliMasteller and Wallace
studied the writing style of each essay to determine auttipr©ne factor they looked at
was word co-occurrence, which is best measured by comelatn fact, the tests they ran
in 1964 are similar to the dependence tests we run on texim&@ction 6.

The remainder of this section is organized as follows. Ireotd place our work in the
context of earlier work, in Section 1.1 we review some of te¢ails of the past work on
association rules in the market basket application. The8eiction 1.2, we point out some
problems in the current definition of association rules aathdnstrate that dependence
rules often are better at capturing the patterns that arggtsught after in the definition
of association rules. Finally, we give an overview of the mdghis paper in Section 1.3.

1.1. Association Rules

We briefly review some of the details of the past work on asgani rules in market basket
data. For this purpose, we defihasket datain general terms.

Definition 1.  LetI = {i1,...,i,} be a set ok elements, calledems. Then,basket
dataB = {by,..., b, } is any collection of: subsets of, and each subsét C I is called
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abasketof items.

For example, in thenarket baskeapplication, the sef consists of the items stocked by
a retail outlet and each basket is the set of purchases fremegjister transaction; on the
other hand, in thelocument basketpplication, the sef contains all dictionary words and
proper nouns, while each basket is a single document in tipeis¢for now we ignore the
frequency and ordering of the words in a document).



While it is clear that the simple notion of basket data is pduleand captures a wide
variety of settings amenable to data mining, it should bet kepnind that there could
be structure in the data (e.g., word ordering within docutsietiat is lost in this general
framework.

An association rule (Agrawal et al., 1993a) in the dataliase defined as follows.

Definition 2.  We say there is aassociation rulei; = i, if
1. i, andiy occur together in at leasts of then baskets (theupport);

2. and, of all the baskets containing at least% also contain, (theconfidencg.

This definition extends easily tb=- .7, wherel and.J are disjoint sets of items instead of
single items. Since it is possible to have alternate dedimitiof association rules, we will
henceforth refer to the above definition as sk@port-confidence framewdidr association
rules. It should be noted that the symbslis a bit misleading since such a rule does not
correspond to real implications; clearly, the confidencasuee is merely an estimate of
theconditional probabilityof i, giveni; .

Consider applying the above definition to market basket flata a grocery store.
Association rules are then statements of the form: “Wherpleelbuy tea, they also often
buy coffee.” In practice, such rules may be used to make aetiatckcampaign effective
or to justify changing product placement in the store. Thafickence statistic ensures that
“often” is a large enough percentage of the people who buiotba potentially interesting.
The support statistic, on the other hand, justifies finan¢iegmarketing campaign or
product placement — these products generate enough sales worthy of attention.
Support is also used to help ensure statistical significameeause if items are rare, the
variance of the confidence statistic may be too large to drajuaeful conclusions.

1.2. ACritique of Association Rules

Association rules, and the support-confidence framewoddue mine them, are well-
suited to the market basket problem. Other basket datagmawhile seemingly similar,
have requirements that the support-confidence framewaosk dot address. For instance,
testing the associati®@nTTERIES = CAT FOOD could not discover a fact such as, “When
people buy batteries, they do not usually also buy cat fofidding such negative im-
plications requires a separate test. While perhaps notefsilus the marketing staff of
supermarkets, such implications can be helpful in manyratattings. For example, fire
code inspectors trying to mine useful fire prevention messumnight like to know of any
negative dependence between certain types of electricalgrdnd the occurrence of fires.
A more serious problem with the support-confidence fram&wsrillustrated in the

following example.

Example 1 Suppose we have market basket data from a grocery storeistogsof n
baskets. Let us focus on the purchase of tea and coffee. faltbeing table,x represents
the presence of an iterm,its absence, and the numbers represent percentages ofdaske



TEA TEA |rOw-sum|

COFFEE| 20 70(90
COFFEE 5 5|10

col-sum 25 775|100

Let us apply the support-confidence framework to the patkatisociation ruleeA =
COFFEE. The support for this rule i80%, which is quite high. Lep(z) be the probability
that the itemsr appear in a random basket. Consider the customer purchadiagket
chosen uniformly at random from the baskets. Then, confidence is effectively the
conditional probability that the customer buys coffeeegithat she buys tea, i.@(TEA A
COFFEE)/p(TEA) = 20/25 = 0.8 or 80%, which too is pretty high. At this point, we may
conclude that the ruleeA = COFFEE is interesting and useful.

However, consider now the fact that the a priori probabitiigt the customer buys coffee
i 90%. In other words, a customer who is known to buy tea is lessylit@buy coffee
(by 10%) than a customer about whom we have no information. Of coitregay still be
interesting to know that such a large number of people whotbayalso buy coffee, but
stating that rule by itself is at best incomplete informatand at worst misleading. The
truth here is that there isregativedependence between buying tea and buying coffee; at
least that information should be provided along with theasgion ruleTEA = COFFEE.

One way of measuring the dependence betweenandCcOFFEE is to compute

p(TEA A COFFEE)/(p(TEA) X p(COFFEE)) = 0.2/(0.25 x 0.9) = 0.89.

The fact that this quantity is less than 1 indicates negdtigendence, since the numerator is
the actual likelihood of seeing a customer purchase botirtdaoffee, and the denominator
is what the likelihood would have been in the case where tleepurchases completely
independent. On the other hand,

p(TEA A COFFEE)/(p(TEA) X p(COFFEE)) = 0.05/(0.25 x 0.10) = 2.00,

indicating a strong positive dependence between the abs#roffee and the presence of
tea. (Note that, by contrast, the confidence in the assoniatile COFFEE = TEA is only
0.05/0.10 = 50%, much lower than the confidence in thea = COFFEE rule.)

If further analysis found that the dependence betwaarreE andTEA were statistically
significant, we could claim the dependence rule, “The pwelEcorrFEE andTEA are
dependent.” Furthermore, we could say, “The major depecelena positive dependence
between the absence@brFEE and the occurrence afeA.” As a result, the store manager
may decide to target non-coffee drinkers in his tea displays |

If the coffee and tea example seems a bit contrived, conBidesian politicians. Suppose
we wish to explore Russian photographs in order to undedspamwer politics in the
Kremlin. We can posit that if two people often appear togeth@hotographs, they are
allied. Then the items are Russian political figures, andh dmsket consists of a list of
figures in one photograph. It is reasonable to suppose thd@time Minister appears in
90% of all photographs and the Defense MinisteRi%s. These percentages could well



break down exactly as in the coffee and tea example, and the kinds of potentially
misleading association rules would result.

In the coffee and tea example, we deduced a dependencejdnbitclear whether our
deduction was statistically significant. Testing for sfgraint dependence is a problem that
statisticians have been studying for over a century; refdrancaster (Lancaster, 1969)
for the theory and a history of this problem. A standard téshdependence involves the
chi-squared statistic, which is both easy to calculate afidhle under a fairly permissive
set of assumptions. This test is useful because it not ortlycttedependence but can
distinguish positive dependence (as in the tea and coffempbe) and negative dependence
(as in the fire code example).

1.3. Overview of Paper

In the following sections, we show how dependence can be aseatbasis for mining
general basket data. We use the chi-squared measure ingfl#oe support-confidence
framework to generate what we cdiépendence ruleshich overcome the problems with
association rules discussed above. Furthermore, we deratsmmbow dependence rules
can be computed efficiently.

We begin in Section 2 with some preliminary definitions anthtion. Our definition of
dependence rules is presented in Section 3. We show thattloed dependence rules is
upward-closed in the lattice of subsets of the item spaclarg us to reduce the mining
problem to the search for a border between dependent angéndent itemsets in the
lattice. In Section 4 we propose that the chi-squared test frlassical statistics be used
to measure the significance of dependence rules. We als@defireasure of interest for a
dependence rule. Our framework is contrasted with the stymomfidence framework for
association rules and we argue that there are several agye&nto using our framework.
We also comment on some limitations of our approach.

Based on the upward-closure property of dependence rulds@me pruning strategies
we develop, in Section 5 we present efficient algorithmsierdiscovery of dependence
rules. In Section 6 we demonstrate the effectiveness of lmarithms by experiments
on census data and finding term dependency in a corpus of eextntents. Finally, in
Section 7 we make concluding remarks. Appendix A gives sofrtbeotheoretical basis
for the chi-squared test in statistics.

2. Preliminaries

In Section 1.1 we defined basket data in terms of a collectibaskets, where each basket
was a set of items. It will be convenient to also have an adtermiew of basket data in
terms of the boolean indicator variables for items, as fadlo

Definition 3.  LetI;,..., I, be a set ok boolean variables calleattributes. Then, a
set of basket® = {by,...,b,} is a collection ofn k-tuples from{TRUE, FALSE}* which
represent a collection of value assignments toktla¢tributes.



Assigning a true valuelRUE) to an attribute variablé; represents the presence of item
i;. A k-tuple from{TRUE, FALSE}* denotes the set of items present in a basket in the
obvious way.

We adopt the following notational convention with regardato attribute variabled
representing some item The event: denotesd = TRUE, or, equivalently, the presence
of the corresponding item in a basket. The complementary evardenotesd = FALSE,
or the absence of the itemfrom a basket. There is an overloading of notation in that
lower-case letters are used to represent both items andéin¢that the item is presentin a
basket, but the meaning will always be clear from the contexthe other hand, upper-case
letters will always represent variables correspondingdms. Finally, we will use: and
y to refer to events that could be either positive or negatindike o andb which refer to
purely positive events.

Definition 4.  We definep(a) = P[A = TRUE] to be the probability that iterma appears
in a random basket. Likewisg(a) = P[A = FALSE] = 1 — p(a). Joint probability
is defined in a similar way. For instancg(ab) = P[A = TRUE, B = FALSE] is the
probability that iten is present while itend is absent.

Note that the probability space underlying these defingtisnsome hypothetical space
from which the baskets are assumed to have been drawn ane wtiosture is desired to
be captured via either association rules or dependence rule

We define independence and dependence of events and variable

Definition 5.
1. Two events andy areindependentif Pz A y] = P[z]P[y].

2. Two variablesd andB areindependentif P[A = v, A B = vy] = P[A = v,]|P[B =
vp] for all possible values, , v, € {TRUE, FALSE}.

3. Events, or variables, that are not independentlepe=ndent

The definition of independence extends in the obvious walyddrtdependence of three or
more events or variables. Note that the testifavay independence of variables involves
2% combinations of event independence. Finally, observettimindependence of two
variablesA andB implies the independence of the evemtndb (as well asz andb, etc.),
but the converse is not true in general.

We now briefly discuss how we estimate event probabilitiedfemarket basket problem.
If we haven baskets, let,,(a) be the number of baskets that include itemLikewise,
O,,(a) is the number of baskets not includingWe estimate(a) by O,,(a)/n. Thisis the
maximum likelihood estimate gf(a), which is a standard estimate used in the statistics
and data mining community. An alternate approach, basedage®an techniques, would
be to start with a prior value gf(a) and modify it based o,,(a) andn.



3. Dependence Rules
The definition of dependence is all that is needed to definertignce rules.

Definition 6.  Let ] be a set of attribute variables. We say that the/ 9etadependence
rule if I is dependent.

This definition is simple but powerful. Part of its power carfeom the fact thaf also
includes2!’! possible patterns of event dependence.

In Section 4 we talk about techniques both for determining i¥ dependent, and for
measuring the power of its dependence. We also discuss howadsure the relative power
of the various patterns of event dependence aggregated idépendence rule. But first,
in the rest of this section, we identify some crucial projsriof dependence that hold
regardless of how dependence is determined or measured.

3.1. The Closure Property

An important feature of our definition is that the propertybafing dependent is upward-
closed in the lattice of itemsets, where the notion of upwaodure is defined as follows.

Definition 7. Consider the lattic& of all possible itemsets from the universe of items
I. A propertyP is said to beupward-closedwith respect to the lattic€ if for every set
with propertyP, all its supersets also have propeRy Similarly, propertyP is said to be
downward-closedif for every set with propertyP, all its subsets also have propefty

We now prove that our notion of dependence rules forms an ugpelased property.

TueoreM 1 If a set of variabled is dependent, so is every superset .of

Proof: If a set of variables is dependent, then some set of eventgiatsd with the
variables must also be dependent. Suppose, without lossnafrglity, that the variables
are A andB and that the evenisandb are dependent. Assume, then, that some superset
ABC is independent. Then all events associated wifRC' must be independent. In
particular, we must have(abc) = p(a)p(b)p(c) and p(abe) = p(a)p(b)p(¢). Then
p(ab) = p(abe) + p(abe) = p(a)p(b)p(c) + p(a)p(b)p(c) = p(a)p(b). Thus,a andb are
independent after all, contrary to our hypothesis A8C' must actually be dependent.
|

In Section 4 we will propose using the test for independence to identify dependence
rules. We show in Appendix A that the® statistic is also upward-closed. That is, if a set
I of items is deemed dependent at significance leyelll supersetd are also dependent
at significance levek. The proof is considerably helped by the fact that, if alli@ates
are boolean, the degrees of freedom for the chi-squaredstésiegardless of the number
of variables.



Definition 8. If an itemset! is dependent but no subset bfs dependent, we salyis
minimally dependent

To understand the significance of closure, let us examinehiming for association rules
is implemented. Using the support-confidence test, thelpnoks usually divided into two
parts: First finding supported itemsets, and then discogetiles in those itemsets that
have large confidence. Almost all research has focused ofirgh®f these tasks. One
reason is that finding support is usually the more expensdm but another reason is that
rule discovery does not lend itself as well to clever aldoris. This is because confidence
possesses no closure property. Support, on the other tfetowinward-closed: If a set of
items has support, then all its subsets also have support.

Researchers have taken advantage of the downward-clossupport in devising ef-
ficient algorithms for association rules. Level-wise algons (Agrawal et al., 1993a)
operate level-by-level, bottom-up, in the itemset lattiée: the i*" level of the lattice, all
itemsets are of sizé and are called-itemsets The level-wise algorithms start with all
i-itemsets satisfying a given property, and use this knogéed explorgi + 1)-itemsets.
Another class of algorithms, random walk algorithms (Gurop et al., 1997), generate a
series of random walks, each of which explores the locatsire of the border. Arandom
walk is a walk up the itemset lattice. It starts with the emipdynset and adds items one
at a time to form a larger itemset. It is also possible to wallvd the itemset lattice by
deleting items from an initial, full itemset. Both levelsa and random walk algorithms
use the closure property to make inferences about the ®tpafan itemset.

It is clear that the upward- and downward-closure are twedaaf the same coin. In
particular, if a propertyP is upward-closed, then not having the property is downward-
closed. Thus, an upward-closed property could be turnedintownward-closed property
by “turning the lattice upside-down.” However, if there dwo or more conditions that
itemsets need to satisfy, some upward-closed and othenmsvdand-closed, then it might be
necessary to simultaneously deal with both forms of clasuréhis case, turning the lattice
upside-down does not really change anything. We brieflydisthe slightly differentways
in which we can exploit the two kinds of closure propertiespeed up an algorithm.

Downward-closure is @runing property. That is, it is capable of identifying objects
thatcannothave a property of interest. To use it, we start out with(a#- 1)-itemsets as
candidates for being, say, supported. As we examitemsets, we cross out sorfiet 1)-
itemsets that we know cannot have support. We are, in effisaig the contrapositive of
the support definition, saying, “If any subset of @nt 1)-itemset does not have support,
then neither can thé + 1)-itemset.” After crossing out some items, we go through the
remaining list, checking eadh + 1)-itemset to make sure it actually does have the needed
support.

Upward-closure, on the other hand cisnstructivein that it identifies objects thahust
have a property of interest. For instance, we may start Wittbelief that ndi + 1)-itemset
is, say, dependent. Looking at aftemset, we can say that if it is dependent, all its
supersets are also dependent. This gives us a list of depgfide1)-itemsets. Unlike in
the pruning case, where we generate false positiies {)-itemsets that do not really have
support), here we generate false negatives (ignored depéfidt+ 1)-itemsets). Because
of this, upward-closure is most useful if the property we la@king for is anunwanted



one. Then, we are finding + 1)-itemsets to prune, and all that happens if we miss some
dependentitemsets is that our pruning is less effectivis.ftlr this reason we concentrate
on minimal dependent itemsets, that is, itemsets that ggeratent though no subset of
themis. The minimality property allows us to prune all thequds of a dependenitemset,
since clearly no superset of a dependent set can be miniohgigndent.

3.2. The Border of Dependence

An advantage of an upward-closed property is that closurans¢he itemsets of interest
form aborder in the itemset lattice. That is, we can list a collection efiisets such that
every itemset above (and including) the set in the itemdafpiossesses the property, while
every itemset below it does not.

Because of closure, the border encodes all the useful irgthom about the interesting
itemsets. Therefore, we can take advantage of the bord@epyoto prune based on
dependence data as the algorithm proceeds. This time- and-saving shortcut does not
work for confidence, which is not upward-closed. If we conghilependence with support,
we can prune using both tests simultaneously. In suppartigence, on the other hand,
confidence testing has to be a post-processing step.

To show that confidence does not form a border, we presentaanm®g where an itemset
has sufficient confidence while a superset of it does not.

Example 2 Below we summarize some possible market basket data foeeoféa, and
doughnuts. The first table is for baskets including doughnwhile the second is for
baskets lacking doughnuts.

DOUGHNUTS | TEA TEA | rOwW-Sum DOUGHNUTS | TEA TEA | rOW-Sum
COFFEE 8 40|48 COFFEE| 10 35|45
COFFEE 1 213 COFFEE 2 214
col-sum 9 42|51 col-sum 12 37|49

Observe thaip(COFFEE A DOUGHNUTS) = (.48, p(COFFEE) = 0.93, so the rule
COFFEE = DOUGHNUTS has confidenc@.52. On the other hand)(TEA A COFFEE A
DOUGHNUTS) = 0.08, p(TEAACOFFEE) = 0.18, sothe rulesOFFEE, TEA = DOUGHNUTS
has confidence.44. For a reasonable confidence cutoffld¥0, COFFEE = DOUGHNUTS
has confidence but its supersetFrFEE, TEA = DOUGHNUTS does not. O

The border property makes practical a wide range of assoniatle algorithms. Level-
wise algorithms can stop early if the border is low (as ismoftee case in practice). Random
walk algorithms hold promise, since a given walk can stoppas s it crosses the border.
The algorithm can then do a local analysis of the border resactossing.

4. The Chi-squared Test for Independence

Let R = {i1,i1} x -~ x {ix, iz} be the Cartesian product of the event sets corresponding
to the presence or absence of items in a basket. An element; ...r;, € Ris a single
basket value, or an instantiation of all the variables. Badhe ofr denotes @ell — this
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Table 1. T for a collection of census data. This set of items was formeaurbitrarily
collapsing a number of census questions into binary form.

item  var name a signifies. . . a signifies. . .
19 SOLO-DRIVER drives alone does not drive, carpools
i1 FEW-KIDS male or less than 3 children 3 or more children
12 NOT-VETERAN  never served in the military  military veteran
13  ENGLISH native speaker of English not a native speaker
14  NOT-CITIZEN not a U.S. citizen U.S. citizen
i5  BORN-US born in the U.S. born abroad
ig  MARRIED married single, divorced, widowed
i7  UNDER-40 no more than 40 years old more than 40 years old
ig  MALE male female
19 HOUSEHOLDER  householder dependent, boarder, renter, etc.

terminology comes from viewin@ as ak-dimensional table, called@ntingency table
Let O(r) denote the number of baskets falling into cell To test whether a given cell
is dependent, we must determine if the actual count inrcdiffers sufficiently from the
expectation.

In the chi-squared test, the expected count of an eventdslesd under the assumption
of independence. For a single event, we use the maximunihdad estimatorsZ(i;) =
On(ij) andE(i;) = n — O,(i;). For sets of events, we use the independence assumption
to calculateE(r) = n x E(r1)/n x --- x E(r)/n. Then the chi-squared statistic is
defined as follows:

) O(r) — E(r))?
3~ 00 - Py

X E(r)

reR

In short, this is a normalized deviation from expectatiorefd® to Appendix A for a
discussion of the theoretical underpinnings of the chiasgd statistic which leads to the
above formula.

The chi-squared statistic as defined will specify whethlek dlems arek-way indepen-
dent. In order to determine whether some subset of itemseperdient, for instance,

i, andiz, we merely restrict the range ofto {iy, i, } x {is,i2} x {i7,i7}.

No matter howr is restricted, the chi-squared test works as follows: atewthe value
of the chi-squared statistic. Corresponding to this valug @ degrees of freedom count
(always1, for boolean variables) is avalue? This value, between 0 and 1, indicates the
probability of witnessing the observed counts were thealdés really independent. If this
value is low (say, less than05), we reject the hypothesis that the variables are independe
We say a set of items is dependensighificance level if the p value of the set is at most
1—a.

To puty? values in perspective, foravalue of0.05 with one degree of freedom, the
cutoff value is3.84. Thus, any set of items with g2 value of3.84 or more is significant
at thel — 0.05 = 95% confidence level.
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Table 2. B for a collection of census data. There are actually 3037@étasbut we show only the
first 9 entries here. Person 1, for instance, either does m dr carpools, is male or has less than 3
children, is not a veteran, speaks English natively, andrsoRerson 5 fits the same set of attributes, so
O(il,iz,i3,ﬁ,i5,%,i7,g, 29) =2.

basket items basket items basket items
1 ip121i315 %7 lg 4 41421315 1718 T i11213 1051718
2 il i2 i3 i7 5 il i2 i3 i5 i7 ig 8 il i2 i3 iﬁ Z.7 i8
3 iy 93 i5 17 ig 19 6 i1i9 i35 i7 9 iy i35 178

Example 3 Considerthe census dataintroduced in Table 1. For this pbeane restrict our
attentionto the nine basketsin Table 2. The contingendg fabvAL.EandHOUSEHOLDER
is as follows:

MALE MALE | FOW-SuUum

HOUSEHOLDER 1 213
HOUSEHOLDER 4 2|6
col-sum 5 419

Now E(HOUSEHOLDER) = O(HOUSEHOLDER) = 3, while E(MALE) = O(MALE) = 5;
note thatE!(HOUSEHOLDER) is the sum of row 1, whil&(MALE) is the sum of column 1.
The chi-squared value is

(1-3x5/9)% (2-3x4/9)? (4—6x5/9% (2—6x4/9)?
3x5/9 3x4/9 6x5/9 6x4/9

=0.267 + 0.333 + 0.133 + 0.167 = 0.900

Since0.900 is less thar8.84, we do not reject the independence hypothesis ab#ie
confidence level. |

The next example, also based on census data detailed im$6ctielps to indicate how
dependence rules may be more useful than association nutestain settings.

Example 4 Consider the census data presented in Table 1. We focus tingtéke
relationship between military service and agésing the full census data, with= 30370,
we obtain the following contingency table:

UNDER-40 UNDER-40 | row-sum|

NOT-VETERAN 17918 911127029
NOT-VETERAN 911 2430|3341

col-sum| 18829 1154130370

We can use row and column sums to obtain expected values,@gdta chi-squared value
of 2006.34, which is significant at th®5% significance level. Furthermore, the largest
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contribution to they? value comes from the bottom-right cell, indicating that deeninant
dependence is being a veteran and being over 40. This maiah&guition.

For comparison, let us try the support-confidence frameworkhis data, with support
at1% (i.e., count304) and confidence d@t0%. All possible rules pass the support test, but
only half pass the confidence test. These are

e NOT-VETERAN = UNDER-40,
e NOT-VETERAN = UNDER-40,
e UNDER-40 = NOT-VETERAN, and
e UNDER-40 = NOT-VETERAN.

These statements correspond to the following claims: “Ma&gple who have served in
the military are over 40,” “Many people who have never serirethe military are 40 or
younger,” “Many people over 40 have never served in the amifit and “Many people 40
or younger have never served in the military.” Taken togetihese statements do not carry
much useful information. A traditional way to rank the statmts is to favor the one with
highest support. In this example, such a ranking leavesrtestatement — the one which
the chi-squared test identified as dominant — in last place. O

The following theorem shows that the chi-squared statistibosed and can therefore be
used for pruning and for locating the border. It is proved jpp&ndix A.

THEOREM 2 In the binomial case, the chi-squared statistic is upwdmbed.

4.1. Measures of Interest

In the last example, as indeed in the first example on coffeletes, we wanted to find
the dependence of a given cell, in order to give a more pregtiseacterization of the
dependence.

Definition 9.  We define thénterest of two eventse andy to be
I(zy) =

with the obvious extension to more than two events.

By considering: events, each associated with one of khieems, we obtain the interest
of a single cell of a&-dimensional contingency table. We denote the interesta#lla
by I(r). Note that dependence rules refer to variables, and therafoentire contingency
table, while interest applies to events and therefore desitegl of the contingency table.

In contingency table notation[(r) = O(r)/E(r) sincep(a)p(b) = E(adb)/n and
p(ab) = O(ab)/n. We can show that the cell with the interest value farthesnfrl
is, in some sense, the most dependent of any cell in the gamtay table.
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Lemma 1 For a given contingency table, letbe the cell with interest valu&(r) maxi-
mizing|I(r) — 1|. This cell contributes most to the’ value of the contingency table.

Proof: By definition, the deviation of the interest from 1|i8(r)/E(r) — 1|. The cell
that maximizes this quantity also maximizgg(r) — E(r)|/E(r), and thus maximizes
(O(r) — E(r))?/E(r). This is exactly the contribution of cetlto x2. [

Interest values above 1 indicate positive dependenceeliilse below 1 indicate neg-
ative dependence. While the absolute number is meaninghest comparative measures
are not. For instance, if the second-highest interest valclese to the first, then the corre-
sponding cell has almost as much dependence, though it gedaus to try to quantify the
difference. Comparing interest values from one contingeable to interest values from
another is meaningless.

Example 5 Consider the census data from Example 4. The corresponudliewgst values
are

UNDER-40 UNDER-40

NOT-VETERAN 1.07 0.89
NOT-VETERAN 0.44 1.91

The bottom-right cell has the most extreme interest, aggeeiith the conclusion from
Example 4 based on contributiond. The other cell values are meaningful as well; for
instance, there is a large negative dependeficel) between being 40 or younger and
being a veteran.

Looking back at the raw cell counts in Example 4, we see treatéfis with high interest
have low counts. Nevertheless, since the chi-squared ¥atuikis example is well above
the95% significance threshold, we have confidence that these siteakies are statistically
significant. ]

4.2. Comparison of Interest and Correlation

While interest is simple to calculate and interpret, andasely tied to the chi-squared test
and contingency tables, it is not the normal statistic useméasure the power of depen-
dence. Instead, theorrelation coefficientis normally used. The correlation coefficient
of a set of items is defined to be the covariance of the itemsnalized by dividing with
the product of the standard deviations of the items. Thisevéd always between1 and

1. Because of the normalization by the standard deviatiotis piossible to meaningfully
compare the correlation coefficients of different items&sch comparisons using interest
measures, as we have already noted, are meaningless.

The correlation coefficient, however, is not really apprage for dependence rules. One
major problem is that covariance is calculated as an agtgemeer the range of values
of the random variables. In fact, the value of the corretaioefficient is a weighted
sum of the dependence between the events associated wittette Therefore, a positive
correlation coefficient near 1 indicates that eithemdb are highly dependent, @arandb
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are highly dependent, or both, but does not provide any metialdd understanding of the
dependence.

Another serious problemis that since the correlation coeffit conflates the dependence
judgments of many events, it is possible for the coefficierta 0 even when variables are
dependent (though such a “false zero” is not possible wheraghbles are boolean). In
general, the correlation coefficient is useful for ideritifylinear functional dependence
between random variables, but is poor at capturing othetkai dependencies or handling
the case of categorical variables.

Despite these problems with the correlation coefficiemtpiés have the advantage that it
allows us to compare disparate itemsets. Thus, the cameledefficient could be used in
some cases to infer that the dependencefuterree, TEA} has higher dependence than
the rule{poucuNuTs, TEA}, although interest would be needed to identify the everis th
contribute the most to each rule.

4.3. Contrast with Support-Confidence Framework

Example 4 demonstrated how the chi-squared test could be mweful than support-
confidence for a wide range of problems. We list some of theathges of thg2-interest
framework over the support-confidence framework.

1. Theuse ofthe chi-squared significance testis more g@idlunded in statistical theory.
In particular, there is no need to choose ad-hoc values gistipnd confidence. While
the significance level is an arbitrary value, it is not ad-imtbat its value can be chosen
in a meaningful way, with results that can be predicted amterjmeted by statistical
theory.

2. The chi-squared statistic simultaneously and unifortakes into account all possible
combinations of the presence and absence of the varioilsigds being examined as
a group.

3. The interest measure is preferable as it directly captdependence, as opposed to
confidence which considers directional implication (aedts the absence and presence
of attributes non-uniformly).

4. The experimental data suggests that using chi-squastsl ¢embined with interest
yields results that are more in accordance with our a prioovdedge of the structure
in the data being analyzed.

4.4. Limitations of the Chi-squared Test

The chi-squared statistic is easy to calculate, which imibidd of statistics is a sure tip-off

that it is an approximation. In this case, the chi-squaretirests on the normal approx-
imation to the binomial distribution (more precisely, t@thypergeometric distribution).
This approximation breaks down when the expected valuesraadl. As a rule of thumb,

Moore (Moore, 1986) recommends the use of chi-squared tdgifo

e all cells in the contingency table have expected value grehan 1;
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e and, at leas80% of the cells in the contingency table have expected valuatgréhan
5.

Forassociation rules, these conditions will frequentlptiken. For a typical application,
|I| may be 700 whilea = 1000000. Even a contingency table with as few as 20 of the
700 possible dimensions will have over a million cells, aaslthe sum of the expected cell
values is only 1 million, not all cells can have expected gajteater than 1.

One solution to this problem is to only consideitemsets wheré < log, n. In most
cases this is probably sufficient: it is not clear that a delpace involving dozens of items
can be easily interpreted, even if it can be constructed. [femrate solution is to use an
exact calculation for the probability, rather than tieapproximation. The establishment
of such a formulais still, unfortunately, a research prabie the statistics community, and
more accurate approximations are prohibitively expensive

Even in low dimensions, many contingency tables may havesaits with small counts.
For these cells, small inaccuracies in the expected couhgreiatly affect they? value.
For this reason, for cells with expectation less than 1 wesigaE(r) = O(r). This is
the most conservative course of action possible in this, gagkit helps ensure that we will
not make a judgment of dependence because of the contrboftia cell with very low
support. See Section 5 for further discussion of combinifgvith support.

Finally, it is tempting to use the value of the® statistic to indicate the degree of
dependence. This is dangerous, because when the indepertugothesis is false, the
calculatedy? value tends to infinity as the sample size increases. Whitepening y”
values within the same data set may be meaningful, compaaings of different data sets
will almost certainly not be.

5. Pruning-based Algorithms for Dependence Rules

As we have mentioned, finding dependence rules is equivaldinding a border in the
itemset lattice. How big can this border be? In the worst cageen the border is in the
middle of the lattice, it is exponential in the number of ienEven in the best case the
border is at least quadratic. If there a0 items, which is not unreasonable, finding the
entire border can be prohibitively expensive. Thus, it isgssary to provide some pruning
function that allows us to ignore “uninteresting” itemsatsthe border. This pruning
function cannot merely be a post-processing step, sinealtiés not improve the running
time. Instead, it must prune parts of the lattice as the #lyorproceeds.

Consider the level-wise algorithms, which first determimegignificant (and interesting)
nodes among the itemsets of size 2, and then considers thseite of size 3, and so on.
Then for the pruning criterion to be effective, it must besed, so we can determine
potentially interesting nodes at the next level based oresad the current level. An
obvious pruning function fitting this criterion is support.

We need a different definition of support, however, than the osed in the support-
confidence framework, because unlike in the support-confieléramework we also seek
negative dependence. In other words, the support-confideamework only looks at the
top-left cell in the chi-squared contingency table. We edthis definition of support as
follows:
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Definition 10. A set of itemsS hascontingency table support (CT-support)s at the
p% level if at leasp% of the cells in the contingency table fSrhave values.

By requiring thatp be a percent, rather than an absolute number, we make ouitidefin
of CT-support downward-closed.

THEOREM 3 The property of having CT-supportat thep% level is a downward-closed
property.

Proof: Suppose a set of itentshas CT-support at thep% level. Consider, without loss

of generality, a subséf = S\ {i}. Then each cell of" has a value equal to the sum of

two cells inS. In particular, celll of T"is equal to them sum of cellsU {i} and U {i} in

S. Sinces is an absolute number, if either of the two cellsSrhas support, so will the

cellinT'. Interms of counting supported cells, the worst case istifiba) {i} andI U {i}

are supported. In this case, there are two supported celiscorresponding to a single

supported cell if’, causing the number of supported cell§ito be half that of5. But the

number of total cells ifi" is half that ofS, so the percent of supported cells cannot decrease.
]

Note that values in the contingency table are observed sahat expected values.

One weakness of this CT-support definition is that, ungasdarger tharb0%, all items
have CT-support at level 1. Thus, pruning at level 1 is nevedpctive, and a quadratic
algorithm looms. Ifp is larger thar25%, though, we can do special pruning at level 1.
Observe thap > 0.25 means that at least two cells in the contingency table wiidhe
supports. If neither itemi; ori, occurs as often as this amount of supportis impossible:
only i, could possibly have the necessary count. If there are maayteans — a similar
argument holds if there are many very common items — thisipgis quite effective.

Other pruning strategies may be used, besides support-paseing. One possibility is
anti-support, where only rarely occurring combinationg@fns are interesting. This may
be appropriate in the fire code example mentioned in Sectifor instance, since fires —
and the conditions leading up to them — are rare. Anti-supgamnot be used with the
chi-squared test at this time, however, since the chi-sglstatistic is not accurate for very
rare events. Another possible pruning method is to prumesiegs with verfigh x? values,
under the theory that these dependencies are probably sousbas to be uninteresting.
Since this property is not downward-closed, it would not fiective at pruning in a level-
wise algorithm. A random walk algorithm, for instance (Gpatos et al., 1997), might be
appropriate for this kind of pruning.

5.1. The Algorithm

Combining the chi-squared dependence rule with pruningissupport, we obtain the
algorithm in Figure 1.

Definition 11.  We say that an itemset sggnificant if it is CT-supported and minimally
dependent.
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Algorithm Dependence Rules

Input: A chi-squared significance level «, support s, support fraction p > 0.25.
Basket data B.

Output: A collection of minimal dependent itemsets, from B.

1. For eachitem i € I, do count O(i). We can use these values to calculate any
necessary expected value, as explained in Section 4.

2. Initialize cAND « 0, S1G < (3, NOTSIG + 0.

3. For each pair of items i,,i, € I such that O(i,) > s and O(i;) > s, do add
{ia,ip} tO CAND.

4. NOTSIG «+ 0.
5. If canD is empty, then return si¢ and terminate.

6. For each itemset in canD, do construct the contingency table for the itemset.
If less than p percent of the cells have count s, then goto Step 8.

7. If the x? value for the contingency table is at least x?, then add the itemset to
s1G, elseadd the itemset to NOTSIG.

8. Continue with the next itemset in caND. If there are no more itemsets in CAND,
then set canD to be the collection of all sets S such that every subset of size
|S| — 1 of S'is in NOTSsIG. Goto Step 4.

Figure 1. The algorithm for determining significant (i.e., dependand CT-supported) itemsets. It hinges on the
fact that significant itemsets at levieh- 1 are supersets of CT-supported but independent sets atle@ép 8
can be implemented efficiently using hashing.

The key observation is stated in the following theorem; theop follows from the
preceding discussion.

THEOREM 4 An itemset at level + 1 can be significant only if all its subsets at level
have CT-support and none of its subsets at Iéaeé dependent.

Proof: If some subset of fails to have CT-support, thehalso must fail to have CT-
support, since CT-support is downward closed. If some dutfséis dependent, theh
cannot be minimally dependent by definition. ]

Thus, for leveli + 1, all we need is a list of the CT-supported but independenisets
from leveli. This listis held inNoTsiG. The listsia, which holds the CT-supported and
dependent itemsets, is the output set of interest.

The final list iscaND, which builds candidate itemsets for level 1 from thenoTsiG
list at leveli. LetS be a set of size + 1 for which every subset of sizeis in NOTSIG.
ThenS is not ruled out by either CT-support pruning or significapcening and is added
to caAND. OncecAND has been constructed, we are done processing itemsetght [€o
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start level + 1, we examine each sSte cAND to see if it actually does have the necessary
CT-support. If so, we add it to eitherc or NoTsIG for leveli + 1, depending on its2
value.

5.2. Implementation Details and Analysis

We now specify some of the key implementation details of dgw@thm and obtain bounds
on its running time.

The most expensive part of the algorithm is Step 8. We propns@plementation based
on perfect hash tables (Fredman et al., 1984, Dietzfelbiegal., 1988). In these hash
tables, there are no collisions, and insertion, deletiowl, laokup all take constant time.
The space used is linear in the size of the data. Bathsic andcaND are stored in hash
tables. Elements aofic can be stored in an array, or output as they are discoveredand
stored at all.

To construct candidates foranDp using hash tables, we consider each pair of elements
in NOTSIG. Supposed and B are itemsets imoTsia. If |[AU B| =i+ 1, AU B might
belong incanD. To test this, we consider all- 1 remaining subsets of U B which have
sizei. We can test each one for inclusionNTsIG in constant time. If all subsets are in
NOTSIG, we addA U B to canD, otherwise we ignore it. The total time for this operation
is O(|noTsiG|?i).

Calculation ofy?, at first blush, seems to take tini&2?) at leveli, since we need to
consider every cell in the contingency table. We can redbedite toO(min{n, 2¢})
by storing the contingency table sparsely, that is, by mmirsg cells where the observed
countis 0. The problem is that cells with count O still colnditie to thex? value. Thus we
massage thg? formula as follows:

(O(r) — E(r))* O(r)
> R Z 0 (O —2B(r) + ZT:E(T).

r
reR

Now Y=, E(r) = n, andg5(O(r) — 2E(r)) is 0if O(r) is 0. We can calculatg? values
based only on occupied cells, and there can be at mosthese.

One expensive operation remains. To construct the comtingable for a given itemset,
we must make a pass over the entire database. In the worstltissequires:’ passes at
leveli. An alternative is to make one pass over the database at@aslhdonstructing all
the necessary contingency tables at once. We need onegemtintable for each element
of canD. This require$)(k*) space in the worst case, though pruning will reduce the space
requirements significantly. At level 2, which usually reepsi the most space in practice,
the space requirement 6f(k?) is probably not onerous, especially since storing an entire
2-dimensional contingency table requires only 4 words. fiftne required at level is, in
both cases)(n|caND|) € O(nk?).

The preceding discussion yields the following theorem.

THEOREM 5 The running time of Algorithm Dependence Rules for el

O(n|cAND| min{n, 2’} + i|NOTSIG|?).
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Itis instructive to compare the algorithm in Figure 1 to tlesh-based algorithm of Park,
Chen, and Yu (Park et al., 1995) for the support-confidereméwork. Their algorithm
also uses hashing to construct a candidate ssth, which they then iterate over to verify
the results. One difference is that verification is easig¢h@ir case, since they only need
to test support. We also need to test chi-squared valuesya expensive operation that
makes careful construction ofaAnD more important. Another difference is we use perfect
hashing while Park, Chen, and Yu (Park et al., 1995) allolisiohs. While collisions
reduce the effectiveness of pruning, they do not affect thal fiesult. The advantage
of allowing collisions is that the hash table may be smalldashing with collisions is
necessary when the database is much larger than main merkéyle we can afford
collisions when constructing the candidate set — with tiseiteof less accurate pruning —
we need perfect hashing feTsic. NoTsIG grows with the dimensionality and with the
number of items. It is an open problem to modify our algoritttmdatabases with many
items.

6. Experimental Results

There is a wide range of problems for which dependence rukesppropriate. In this
section, we describe the results of the experiments we pee with three different
kinds of data: boolean/numeric census data (Section 6e%),data from newsgroups
(Section 6.2), and synthetic data (Section 6.3). While tisetiivo are useful for illustrating
the conceptual aspect of the dependence rules, the lassgheweffect of our pruning
strategies on the performance of the algorithm.

Census data, such as that in Tables 1 and 2, readily lentfigdtskependence analysis.
Since the chi-squared test extends easily to non-binawy, de¢ can analyze dependen-
cies between multiple-choice answers such as those foucenisus formé.Even when
collapsing the census results to binary data, as we haveshosdo, we can find useful
dependencies (see Example 4).

Another important application is the analysis of text dalta.this case, each basket is
a document, and each item is a word that occurs in some dodunifetne documents
are newspaper articles, for instance, mining may turn updampany names that occur
together more often than would be expected. We could themigrethese two companies
and see if they are likely to merge or reach an operating aggaeé Negative dependencies
may also be useful, such as the discovery that a documenistingf recipes contains
the wordraTTyY less often than would be expected.

6.1. Census Data

The first data set we tested was the census data setpwitl80370 baskets and = 10
binary items. The items are as in Table 1. We show results dtin the x2-interest test
(Table 3) and the support-confidence test (Table 4). Foxthmterest test, we repogt
values as well ag? values. Thep value associated with @ value is the probability that
independent variables would produce data yieldingithealue seen (or a larger one). This
means noc? value is significant at a level above- p. Thus,x? scores that are significant
at the95% significance level are exactly those wiitvalue below0.05.
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Table 3.They? test on census data. Bold values are significant at ti% significance level. I — p indicates

a b x2 pvalue I(ab) I(ab) I(ab) I(ab)
SOLO-DRIVER FEW-KIDS 37.15 0.0000 1.025 0.995 0.773 1.050
SOLO-DRIVER NOT-VETERAN 244.47 0.0000 0.934 1.015 1.554 0.879
SOLO-DRIVER ENGLISH 0.94 0.3323 1.004 0.999 0.966 1.007
SOLO-DRIVER NOT-CITIZEN 4.57 0.0325 0.901 1.022 1.007 0.998
SOLO-DRIVER BORN-US 0.05 0.8231 0.999 1.000 1.008 0.998
SOLO-DRIVER MARRIED 737.18 0.0000 1.574 0.874 0.807 1.042
SOLO-DRIVER UNDER-40 153.11 0.0000 0.880 1.026 1.192 0.958
SOLO-DRIVER MALE 138.13 0.0000 1.155 0.966 0.866 1.029
SOLO-DRIVER HOUSEHOLDER 746.28 0.0000 1.404 0912 0.722 1.061
FEW-KIDS NOT-VETERAN 296.55 0.0000 0.989 1.104 1.094 0.135
FEW-KIDS ENGLISH 24.00 0.0000 0.997 1.030 1.026 0.759
FEW-KIDS NOT-CITIZEN 1.60 0.2059 1.009 0.917 0.999 1.006
FEW-KIDS BORN-US 1.70 0.1923 0.999 1.008 1.007 0.933
FEW-KIDS MARRIED 352.31 0.0000 0.939 1.562 1.021 0.811
FEW-KIDS UNDER-40 2010.07 0.0000 1.067 0.385 0.892 1.988
FEW-KIDS MALE 2855.73 0.0000 1.109 0.000 0.906 1.863
FEW-KIDS HOUSEHOLDER 229.07 0.0000 0.965 1.317 1.024 0.782
NOT-VETERAN  ENGLISH 82.02 0.0000 0.994 1.053 1.051 0.576
NOT-VETERAN  NOT-CITIZEN 190.71 0.0000 1.103 0.140 0.993 1.061
NOT-VETERAN  BORN-US 176.05 0.0000 0.991 1.075 1.077 0.355
NOT-VETERAN  MARRIED 993.31 0.0000 0.892 1.901 1.036 0.697
NOT-VETERAN  UNDER-40 2006.34 0.0000 1.070 0.414 0.887 1.942
NOT-VETERAN  MALE 3099.38 0.0000 0.881 1.994 1.103 0.142
NOT-VETERAN  HOUSEHOLDER 819.90 0.0000 0.931 1.573 1.047 0.606
ENGLISH NOT-CITIZEN 9130.58 0.0000 0.271 6.823 1.052 0.588
ENGLISH BORN-US 11119.28 0.0000 1.073 0.417 0.372 6.016
ENGLISH MARRIED 110.31 0.0000 0.963 1.294 1.012 0.901
ENGLISH UNDER-40 62.22 0.0000 0.987 1.101 1.020 0.838
ENGLISH MALE 21.41 0.0000 0.990 1.081 1.009 0.930
ENGLISH HOUSEHOLDER 0.10 0.7518 1.001 0.994 0.999 1.004
NOT-CITIZEN BORN-US 18504.81 0.0000 0.000 1.071 9.602 0.391
NOT-CITIZEN MARRIED 189.66 0.0000 1.512 0.964 0.828 1.012
NOT-CITIZEN UNDER-40 76.04 0.0000 1.148 0.989 0.762 1.017
NOT-CITIZEN MALE 14.48 0.0001 1.088 0.994 0.924 1.005
NOT-CITIZEN HOUSEHOLDER 3.27 0.0706 0.953 1.003 1.032 0.998
BORN-US MARRIED 312.15 0.0000 0.940 1.512 1.020 0.827
BORN-US UNDER-40 10.62 0.0011 0.995 1.043 1.008 0.930
BORN-US MALE 12.95 0.0003 0.992 1.065 1.007 0.944
BORN-US HOUSEHOLDER 2.50 0.1138 0.996 1.032 1.003 0.978
MARRIED UNDER-40 2913.05 0.0000 0.579 1.142 1.677 0.772
MARRIED MALE 66.49 0.0000 1.087 0.971 0.925 1.025
MARRIED HOUSEHOLDER 186.28 0.0000 1.163 0.945 0.888 1.038
UNDER-40 MALE 98.63 0.0000 1.048 0.922 0.958 1.067
UNDER-40 HOUSEHOLDER 4285.29 0.0000 0.643 1.574 1.246 0.605
MALE HOUSEHOLDER 12.40 0.0004 1.026 0.977 0.982 1.016

the maximum level for which thig? value is significant.) Bold interest values are the mosieent.
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ab SaUb Saub S,up Szul a=ba=>ba=>ba=>bb=>a b=>a b=>a b=>a

g U1 16.6 73.6 1.4 8.5 0.92 090 0.08 0.10 0.18 0.82 0.14 0.86
ig 12 150 743 3.0 7.7 083 091 0.17 0.09 0.17 0.83 0.28 0.72
g 13 16.0 729 19 9.2 0.89 089 0.11 0.11 0.18 0.82 0.17 0.83

10 14 1.1 5.5 169 76.5 0.06 0.07 094 0.93 0.16 0.84 0.18 0.82
ig 15 16.1 735 19 8.5 090 090 0.10 0.10 0.18 0.82 0.18 0.82
1o U6 7.1 18.1 10.8 64.0 0.40 0.22 0.60 0.78 0.28 0.72 0.14 0.86
i it 9.7 51.9 8.2 30.2 0.54 063 046 037 0.16 0.84 0.21 0.79
ig U8 9.6 36.7 8.3 453 0.54 045 046 0.55 021 0.79 0.16 0.84
ig 19 10.3 30.5 7.7 51.6 0.57 037 043 0.63 025 0.75 0.13 0.87
i1 12 79.6 9.7 106 0.1 088 099 0.12 0.01 089 0.11 099 0.01
11 13 79.9 9.0 103 0.8 0.89 092 0.11 0.08 090 0.10 0.93 0.07
i1 14 6.0 0.6 84.2 9.2 0.07 0.06 093 094 091 0.09 090 0.10
11 U5 80.7 89 95 1.0 090 090 0.10 0.10 0.90 0.10 091 0.09
i1 Ug 21.3 3.9 689 6.0 0.24 039 076 0.61 085 0.15 092 0.08

i1 17 59.3 23 309 7.5 0.66 024 034 076 096 0.04 080 0.20
11 18 46.3 0.0 43.8 9.8 0.51 0.00 049 1.00 1.00 0.00 0.82 0.18

i1 19 35,5 53 54.7 4.6 0.39 054 0.61 0.46 087 0.13 0.92 0.08
i 13 78.9 10.0 104 0.7 0.88 094 0.12 0.06 0.89 0.11 0.94 0.06
12 U4 6.5 0.1 82.8 10.6 0.07 0.01 093 099 099 0.01 0.89 0.11
i 15 79.3 10.3 10.0 0.4 0.89 096 0.11 0.04 089 0.11 0.96 0.04
2 Ug 20.1 5.1 692 5.6 0.22 048 0.78 0.52 080 0.20 093 0.07
i it 58.9 2.7 304 8.0 0.66 026 034 0.74 096 0.04 079 0.21
i 18 36.5 99 529 0.8 041 092 059 0.08 079 0.21 0.98 0.02
12 U9 33.9 6.9 554 3.8 0.38 064 062 0.36 083 0.17 094 0.06
13 U4 1.6 50 873 6.1 0.02 045 098 055 024 0.76 093 0.07
i3 15 8.4 42 34 7.0 096 037 0.04 063 095 0.05 0.33 0.67
i3 Ug 216 36 673 75 0.24 033 0.76 0.67 086 0.14 090 0.10
i3 17 54.1 7.6 348 3.6 0.61 068 039 032 088 0.12 091 0.09
13 18 40.8 56 48.1 5.6 0.46 050 0.54 0.50 0.88 0.12 0.90 0.10
i3 19 36.2 45 526 6.6 0.41 040 059 0.60 089 0.11 0.89 0.11
i4 15 0.0 89.6 6.6 3.8 0.00 096 1.00 0.04 0.00 1.00 0.64 0.36
14 Ug 25 227 4.1 707 0.38 024 0.62 0.76 0.10 0.90 0.05 0.95
i 17 4.7 57.0 1.9 36.4 0.71 061 0.29 039 0.08 092 0.05 0.95
14 18 3.3 43.0 3.3 504 0.50 0.46 0.50 0.54 0.07 0.93 0.06 0.94
14 U9 2.6 38.2 4.0 55.2 0.39 041 0.61 059 0.06 094 0.07 0.93
i5 16 21.2 40 684 6.4 0.24 038 0.76 0.62 084 0.16 091 0.09
i5 17 54.9 6.7 346 3.7 0.61 064 039 036 089 0.11 090 0.10
i5 18 41.2 5.1 484 5.3 0.46 049 0.54 051 089 0.11 090 0.10
i5 19 364 4.4 53.2 6.0 041 042 059 0.58 0.89 0.11 0.90 0.10
ig It 9.0 52.7 16.2 22.2 0.36 0.70 0.64 0.30 0.15 0.85 0.42 0.58
16 18 12.7 33.6 125 41.2 0.50 045 0.50 0.55 0.27 0.73 0.23 0.77
ig 19 11.9 28.8 13.3 46.0 047 039 053 0.61 0.29 071 022 0.78
i7 18 29.9 16.4 31.7 22.0 049 043 051 057 065 035 0.59 041
i7 U9 16.1 24.6 455 13.8 0.26 064 0.74 0.36 040 0.60 0.77 0.23
i8 19 19.4 21.4 27.0 32.3 0.42 0.40 0.58 0.60 0.48 0.52 0.45 0.55

Table 4. Support/Confidence applied to census data. Bold valuesifirt block correspond to support (at the
1% cutoff); bold values in the second block correspond to cemitg (at thé).5 cutoff) as well.
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To generate thg? values for this data, we ran the algorithm in Figure 1 on a 90z2MH
Pentium running Linux 1.2.13. The machine has 32 Meg. of m&@mory. The program
was written in C and compiled usirgec with the -O6 compilation option. The entire
database fit into main memory. The program t8akseconds of CPU time to complete.

Let us illustrate how data mining could be performed on thsults in Table 3. With
S0 many pairs dependent, we are immediately struckdmw-kips, NoT-cITIZEN} @and
{FEW-KIDS, BORN-US}, which are not. We are even more surprised when we see that
FEW-KIDS concerns number of children and T-c1TizEN andBorN-US concern markers
for immigrants. This is surprising because conventionadesm has it that immigrants
are much more likely to have large families than native-bAmericans. Perhaps, we
conjecture, we are led astray by the category definitiorgesinales are lumped together
with women having few children. Perhaps it is not that imraigs have few children, but
rather that they are preponderantly male. We look at the fdateNOT-CITIZEN, MALE}
and{BORN-US, maLE} to explore this. These are both significant, and the intdigstes
show there is indeed a dependency between being male argldmeimabroad or not being a
U.S. citizen. Theinterest values are fairly close to 1, tilguindicating the bias is not strong.
It does not seem strong enough to account for the indeperdeaobserved. A further
jarring note for our explanationis the pdirew-k1Ds, ENGLISH}. This pairincludes native
language, another marker of immigration. Batw-KIDS, ENGLISH} is significant, which
would lead us to believe immigration is dependent on fam#g.sFurthermoregNGLISH
is just as dependent amaLE as the other two markers of immigration. Perhaps, then, our
assumption thatNGLISH, NOT-CITIZEN, andBORN-US are good markers of immigration
is flawed. Table 3 gives us much to mull on.

We invite the reader to attempt a similar analysis with thppsut-confidence data in
Table 4. For a special challenge, ignore the last seven adumhich are not typically
mined in support-confidence applications. We find that itismharder to draw interesting
conclusions about census data from the support-confidesoés.

Another interesting result is thabLo-DRIVER and MARRIED are dependent, and the
strongest dependence is between being married and drilomg.a Does this imply that
non-married people tend to carpool more often than maradd?f Or is the data skewed
because children cannot drive and also tend not to be marBedause we have collapsed
the answers “does not drive” and “carpools,” we cannot angtis question. A non-
collapsed chi-squared table, with more than two rows angiook, could find finer-grained
dependency. Support-confidence cannot easily handleptauiiem values.

The magnitude of thg? value can also lead to fruitful mining. The highgdtvalues are
for obvious dependencies, such as being born in the Unitgésand being a U.S. citizen.
These values often have interest levels of 0, indicatingvgossible event (for instance,
having given birth to more than 3 children and being male).

Results from support-confidence framework tend to be haoderderstand. Considering
BORN-US andMARRIED, we have both the rules, “If you are born in the U.S. you are
likely to be married,” and “If you are not married you are likéo be born in the U.S.”
These two statements are not inconsistent, but they aresiogf What is more worrisome,
every pair of items has the maximum four supported rules. @édgmumber would continue
to support three or four rules even if the confidence levelewaised t6r5%. Someone
mining this data using support-confidence would concludédh item pairs have all sorts
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of interesting associations, when a look at f{fevalues shows that some associations
cannot be statistically justified. Furthermore, some ofthies with the largest support and
confidence values, such BBW-KIDS andNOT-CITIZEN, turn out not to be dependent.

Note that, for this data set, no rule ever has adequate cowfdsut lacks support. This
is not surprising since we examine only itemsets at levell&ne support is plentiful.

6.2. Text Data

We analyzed 91 news articles from the clari.world.africavsdierarchy, gathered on 13
September 1996. We chose only articles with at least 200 svordt counting headers),
to filter out posts that were probably not news articles. Advaas defined to be any
consecutive sequence of alphabetic characters; thus ‘&passessive suffix would be its
own word while numbers would be ignored. To keep the expartrageasonable size, we
pruned all words occurring in less thaf% of the documents; this is a more severe type
of pruning than the special level 1 pruning discussed iniSed&. This left us with 416
distinct words.

One would expect words to be highly dependent, and indesduined out to be the
case. Of the{‘l;G) = 86320 word pairings, there were 8329 dependent pairs,1i(& of all
word pairs are dependent. More thEs?% of all triples of words are dependent. Because
of the huge amount of data generated, thorough analysiseofetbults is very difficult.
We provide some anecdotal analysis, however, to give a tddtee effectiveness of the
chi-squared test on text data.

A list of 12 dependent itemsets is presented in Table 5. Wes stod only the dependent
words but the major dependence in the data. We see some sliemendenciesiREA
appears often withROVINCE, which is not surprising since the two terms are clearlytezla
The largest singlg? value relateNELSON to MANDELA, again hardly surprising.

While some pairs of words have largé values, no triple has &2 value larger than
10. Remember that we report minimal dependent itemsetsossubset of a triple is
itself dependent. ThuBURUNDI, cOMMISSION, andpPLAN are 3-way dependent, though
COMMISSION andPLAN, say, are not. Since the major dependencedwasmissioN and
PLAN but lacksBUurRUNDI, we might suspect that there are fewer commission making
plans in Burundi than other African nations. Likewis®FRICAN, MEN, and NELSON,
are dependent, thoughrrican andMEN alone are not, leading us to posit that articles
including Nelson Mandela might disproportionately refefrican men. Another major
dependence hasrriciAL and AUTHORITIES occurring without the worarAck. Could
that be because race is not mentioned when discussing ayfigures, or perhaps because
non-black authority figures are given more prominence?

We include the threesom&VERNMENT, 1S, andNUMBER because it has the highegt
value of any triple of words. Like many of the dependent &flof which there are well
over a million, this itemset is hard to interpret. Part of thifficulty is due to the words,
which does not yield as much context as nouns and active varlpsactice, it may make
sense to restrict the analysis to nouns and active verbsuttepsway such meaningless
dependencies.

It is important to note that, with so many dependencies ifledt some are bound to be
incorrect. At a95% significance level, we would expe&¥# of all itemsets identified as
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Table 5. Some word dependencies in the clari.world.africa newslagi Sometimes the dependencies are
suggestive, but not always; the last itemset is one of theyroanfusing itemsets.

dependent words x2  pvalue major dependence includes  major dependence omits
area province 24.269  0.0000 area province

area secretary war 6.959  0.0083 area war secretary
area secretary they 7.127  0.0076 area they secretary
country men work 4.047  0.0442 country men work

deputy director 9.927  0.0016 deputy director

members minority 4.230  0.0397 members minority

authorities black official 4.366  0.0367 authorities official black
burundi commission plan ~ 5.452  0.0195 commission plan burundi
african men nelson 5.935  0.0148 african men nelson

liberia west 48.939  0.0000 liberia west

mandela nelson 91.000  0.0000 mandela nelson

government is number 9.999  0.0016 is number government

dependentto be actually independent. The typical way tdleahis problem is to raise the
significance level, based on the number of itemsets we exgmmirthe expected number of
misidentifications is low. When considering hundreds ofuands of itemsets, as in the
text example, this approach is not feasible.

6.3. Synthetic Data

The census data is too small, and its border too low, to stuglgffectiveness of the pruning
techniques. On the other hand, the text data is too big: we feeced to prune words with
low support even before starting our mining algorithm. To dgta that is the appropriate
size for exploring the effectiveness of our algorithm, wentto synthetic data from IBM’s
Quest group (Agrawal et al., 1996).

We generated market basket data with 99997 baskets ande®ii4. itVe set the average
basket size to be 20, and the average size of large itemdmsitoTo generate the’ values
for this data, we ran the algorithm in Figure 1 on a PentiumvAtb a 166 MHz. processor
running Linux 1.3.68. The machine has 64 Meg. of memory aacktitire database fit into
main memory. The program to@349 seconds of CPU time to complete.

To analyze the effectiveness of the pruning, we look at s¢¥actors. One is the number
of itemsets that exist at each level, i.e., the number ofsetmwe would have to examine
without pruning. The next is the size o ND; this is the number of itemsets we actually
examine. Each itemset inaND is either added te1c, added tovoTsia, or discarded.
The smaller the number of items discarded, the more effectir pruning techniques. We
summarize these figures for the Quest data in Table 6.

Note that unlike with the text data, the number of depende=ratilevel 3 is much smaller
than the number of dependencies at level 2. Though we do et 8fe numbers, it is
again the case that the 3-way dependencies have much jdwealues than the average
2-way dependence, with no 3-way dependence hayfng 8.7. In this case, both support
and significance provide pruning, though the effect of suppeems to be much more
pronounced.
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level litemset$ |cAND| |cAND discard$ |SiG| |NOTSIG|
2 378015 8019 323 4114 3582
3 109372340 782 647 17 118
4 23706454695 0 0 0 0

Table 6. The effectiveness of pruning on reducing the number of il@mexamined. Two measures of pruning
quality are the size afanp and the number afanp discards. The lower these two quantities are, the bettele No
that itemsets is1c would not be pruned by a support-confidence testssd is one measure of the effectiveness
of dependence pruning considered by itself.

7. Conclusions and Further Research

We have introduced a generalization of association rulelea dependence rules, that
are particularly useful in applications going beyond thendiard market basket setting.
In addition, these rules have some advantages over the sterafard association rules.
Dependence rules seem useful for analyzing a wide rangetaf dad tests using the
chi-squared statistic are both effective and efficient foring.

Our work raises many important issues for further resedratst, there is the question of
identifying other measures and rule types that capturepetin data not already captured
by association rules and dependence rules. For examples gase of documents, it would
be useful to formulate rules that capture the spatial Icafiwords by paying attention to
item ordering within the basket. In addition, it would bedrgsting to explore the class of
measures and rules that lead to upward-closure or downalastke in the itemset lattice,
since closure appears to be a desirable property both freroathceptual and the efficiency
points of view. We have also suggested another algorithdga,i random walks on the
lattice, for dependence rules that may apply in other ggtinlt is easy to verify that a
random walk algorithm has a natural implementation in teaina datacube of the count
values for contingency tables, and we hope to explore thigection in a later paper.

With regard to the chi-squaredtestitself, a significanbfeo is the increasing inaccuracy
ofthe chi-squaredtest as the number of cells increase. fisiegtt, exact test for dependence
would solve this problem, though other computational sohg may be possible. In lieu
of a solution, more research is needed into the effect ofriggaells with low expectation.
Though ignoring such cells can skew results arbitrarily gifieially constructed data sets,
it is not clear what the impact is in practice.

Another major source of error, already mentioned in SecBdh is involved in the
significance level cutoff. As the cutoff changes, so doesdte number of false positives
(independent itemsets witl? value above the cutoff) and false negatives (dependent
itemsets withy? value below the cutoff). Further research is necessary terghéne how
the optimal cutoff value varies from application to apptioa.

Another area of research is in non-support-based pruniitgrier. If these criteria are
not downward-closed, a non-level-wise algorithm will pablly be necessary to keep the
computation efficient. For example, it would be interestingxperiment with the random
walk algorithm.
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All of the data we have presented have small borders becaosesmall itemsets are
dependent. It might be fruitful to explore the behavior ofedaets where the border is
exponential in the number of items.

Finally, as we mentioned in Section 5.2, our algorithm reggithat all the non-significant
itemsets at a level be stored, and therefore it is not seatabilatabases with many items.
This problem becomes particularly acute when the bordeigh, Hor instance when 10-
itemsets both exist and are useful for the experimentessiodier. Besides being important
from a practical point of view, further research in this aneay also yield more insight into
properties of the border and of closure. Such a result woelddeful in its own right.
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Appendix A
The Theory of Chi-squared Distributions

Intuitively, the chi-squared statistic attempts to meaghe degree of independence be-
tween different attributes by comparing their observedguas of occurrence with the
expected pattern of occurrence under the assumption of letenmdependence and a
normal distribution on the occurrence of each attributeteNbat the normal distribution
assumption is justified for a large value @f, as a reasonable distribution will approach
normality asymptotically.

We briefly review the theoretical justification for emplogithe chi-squared statistic in
this setting. Thisis classical work in statistics that go@sk at least to the last century. Refer
to the book by Lancaster (Lancaster, 1969) for the histoxy theory of the chi-squared
test for independence.

Let X be a Bernoulli random variable that denotes the number ofesses inV in-
dependent trials where the probability of success in angrgivial isp. The expected
number of successes §p and the variance iVp(1 — p). The classical work of de
Moivre (de Moivre, 1733) and Laplace (de Laplace, 1878) lstatdished that the random
variable y = \/% follows the standard normal distribution. The square o thi
random variable is given by

» _ (X -Np)?®
X Np(1 - p)
(X = Np)* | (N =X)=N(1-p))
Np N(1-p)
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(X, —Np)*  (Xo - N(1-p)*

Np N(1-p)
_ (X5 - E(X))? | (X — E(Xo))?
BE(Xy) E(Xo)

whereX; denotes the number of successes Agdlenote the number of failures in thé
trials. Note that, by definition, thg? random variable is asymptotically distributed as the
square of a standard normal variable.

Pearson (Pearson, 1900) extended the definition to thermonital case, wher& can
take on any value in a sét. The modified formula is

2 (X — B(X,))?
=2 TR
re’
and yields a¢? distribution with|U | — 1 degrees of freedom (we lose one degree of freedom
due to the constraint’ _,, X, = N).

We can further generalize the variable to the case of multiple random variables. We
consider the binomial case, though the multinomial casengld in the expected way. Let
X1 ..., X* denotek independenbinomially distributed random variables. We can define
a contingency tabler count tableC'T" that is ak-dimensional array indexed b0, 1}*.
Each index refers to a uniqueell of the contingency table. The c&llT(ry,...,7) in
the table is a count of the number of trials, outéfindependent trials, where the event
(X' =ry,..., X* = r.) occurs. We define thg? value as

& = Z (CT(ry,...,m) — BE(CT(ry,...,71)))?
‘ r1€{0,1},...,r, €{0,1} E(CT(ry,...,rx))
This has 1 degree of freedom — we have two values in each rolecdéd@ntingency table
and one constraint in that the row sum is fixed. In the genewdimomial case, ifX? can
haveu; different values, there arfg;; — 1)(uy — 1) - - - (ug, — 1) degrees of freedom.
We now prove the theorem stated in Section 4.

THEOREM 2 In the binomial case, the chi-squared statistic is upwadmbed.

Proof: The key observation in proving this is that regarldess ofdimeensionality, the
chi-squared statistic has only one degree of freedom. Tthushow upward-closure it is
sufficient to show that if a set of items hgé valueS, then any superset of the itemset has
x2 value at leasf. We show this for itemsets of size 2, though the proof easilyegalizes
to higher dimensions.

Consider variablest, B, andC. They?-statistic for the variabled andB is defined as
follows:
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Now, letE denote the valu&(AB) andO the valueD(AB). Definexr = E(ABC') and
y = E(ABC). Likewise, defineX = O(ABC) andY = O(ABC). Note thatt = z+y
andO = X + Y. Then, in they?-statisticS 4 g for the triple A, B, andC, we replace the
term
(E-0)°
E
in Sap by the terms
- X 2 _ 2
(¢ =X (y-Y¥)
Therefore, inSapc — Sag, we have the terms
(r - X)? (-¥)? (E_0)

T Y E
_ Yty - X)) +a@+y)ly —Y)? —aylz+y) - (X +Y))?
zy(z +y)
_oay(r - X tayly - Y 4y - X +2(y —Y)?
zy(z +y)
zyl(z —X)’ +(y - Y)* +2(z - X)(y - V)]
ay(z +y)
_ Y- Xty V) 2ay(r - X)(y - Y)
zy(z +y)
_ e X) sy - V)P
zy(z +y)

_ (@Y —yX)?

- ay(z+y)
This term is never negative, implying théi g > Sap always. [ ]
Appendix B

The data sets used in this paper are accessible via the fojduRL.:
http://www.research.microsoft.com/datamine

Notes

1. Aclassic, albeit apocryphal, example is the rule thapfewho buy diapers in the afternoon are particularly
likely to buy beer at the same time (Ewald, 1994).

2. Thep value can be easily calculated via formulas, or obtaineghfradely available tables for the chi-squared
distribution.

3. In reality we would mine this data rather than query forWe present the material in this way in order to
compare two testing techniques, not to illustrate actuel us

4. Adanger is that as the number of cells increases, probigthsaccuracy of they? statistic increase as well.
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