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1

1Introduction

atabase technology has evolved rapidly in the three decades since
the rise and eventual dominance of relational database systems.

While many specialized database systems (object-oriented, spatial, mul-
timedia, etc.) have found substantial user communities in the science
and engineering fields, relational systems remain the dominant database
technology for business enterprises. 

Relational database design has evolved from an art to a science that
has been made partially implementable as a set of software design aids.
Many of these design aids have appeared as the database component of
computer-aided software engineering (CASE) tools, and many of them
offer interactive modeling capability using a simplified data modeling
approach. Logical design—that is, the structure of basic data relation-
ships and their definition in a particular database system—is largely the
domain of application designers. These designers can work effectively
with tools such as ERwin Data Modeler or Rational Rose with UML, as
well as with a purely manual approach. Physical design, the creation of
efficient data storage and retrieval mechanisms on the computing plat-
form being used, is typically the domain of the database administrator
(DBA). Today’s DBAs have a variety of vendor-supplied tools available to
help design the most efficient databases. This book is devoted to the
logical design methodologies and tools most popular for relational
databases today. Physical design methodologies and tools are covered in
a separate book.

D
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2 CHAPTER 1 Introduction

In this chapter, we review the basic concepts of database manage-
ment and introduce the role of data modeling and database design in
the database life cycle. 

1.1 Data and Database Management

The basic component of a file in a file system is a data item, which is the
smallest named unit of data that has meaning in the real world—for
example, last name, first name, street address, ID number, or political
party. A group of related data items treated as a single unit by an applica-
tion is called a record. Examples of types of records are order, salesperson,
customer, product, and department. A file is a collection of records of a
single type. Database systems have built upon and expanded these defi-
nitions: In a relational database, a data item is called a column or
attribute; a record is called a row or tuple; and a file is called a table.

A database is a more complex object; it is a collection of interrelated
stored data that serves the needs of multiple users within one or more
organizations, that is, interrelated collections of many different types of
tables. The motivations for using databases rather than files include
greater availability to a diverse set of users, integration of data for easier
access to and updating of complex transactions, and less redundancy of
data. 

A database management system (DBMS) is a generalized software sys-
tem for manipulating databases. A DBMS supports a logical view
(schema, subschema); physical view (access methods, data clustering);
data definition language; data manipulation language; and important
utilities, such as transaction management and concurrency control, data
integrity, crash recovery, and security. Relational database systems, the
dominant type of systems for well-formatted business databases, also
provide a greater degree of data independence than the earlier hierarchi-
cal and network (CODASYL) database management systems. Data inde-
pendence is the ability to make changes in either the logical or physical
structure of the database without requiring reprogramming of applica-
tion programs. It also makes database conversion and reorganization
much easier. Relational DBMSs provide a much higher degree of data
independence than previous systems; they are the focus of our discus-
sion on data modeling. 
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1.2 The Database Life Cycle 3

1.2 The Database Life Cycle 

The database life cycle incorporates the basic steps involved in designing
a global schema of the logical database, allocating data across a com-
puter network, and defining local DBMS-specific schemas. Once the
design is completed, the life cycle continues with database implementa-
tion and maintenance. This chapter contains an overview of the data-
base life cycle, as shown in Figure 1.1. In succeeding chapters, we will
focus on the database design process from the modeling of requirements
through logical design (steps I and II below). The result of each step of
the life cycle is illustrated with a series of diagrams in Figure 1.2. Each
diagram shows a possible form of the output of each step, so the reader
can see the progression of the design process from an idea to actual data-
base implementation. These forms are discussed in much more detail in
Chapters 2 through 6.

I. Requirements analysis. The database requirements are deter-
mined by interviewing both the producers and users of data and
using the information to produce a formal requirements specifi-
cation. That specification includes the data required for process-
ing, the natural data relationships, and the software platform for
the database implementation. As an example, Figure 1.2 (step I)
shows the concepts of products, customers, salespersons, and
orders being formulated in the mind of the end user during the
interview process. 

II. Logical design. The global schema, a conceptual data model dia-
gram that shows all the data and their relationships, is devel-
oped using techniques such as ER or UML. The data model
constructs must ultimately be transformed into normalized (glo-
bal) relations, or tables. The global schema development meth-
odology is the same for either a distributed or centralized
database.

a.Conceptual data modeling. The data requirements are analyzed
and modeled using an ER or UML diagram that includes, for
example, semantics for optional relationships, ternary rela-
tionships, supertypes, and subtypes (categories). Processing
requirements are typically specified using natural language
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4 CHAPTER 1 Introduction

expressions or SQL commands, along with the frequency of
occurrence. Figure 1.2 [step II(a)] shows a possible ER model
representation of the product/customer database in the mind
of the end user. 

Figure 1.1 The database life cycle

Determine requirements

Model

Information requirements

Integrate views

Transform to SQL tables

[multiple views]

[else]

[else]

[defunct]

[special requirements]

[single view]

Normalize

Select indexes

Denormalize

Implement

Monitor and detect changing requirements

Physical design

Logical design

Implementation
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1.2 The Database Life Cycle 5

b.View integration. Usually, when the design is large and more
than one person is involved in requirements analysis, multi-
ple views of data and relationships result. To eliminate redun-
dancy and inconsistency from the model, these views must
eventually be “rationalized” (resolving inconsistencies due to
variance in taxonomy, context, or perception) and then con-
solidated into a single global view. View integration requires
the use of ER semantic tools such as identification of syn-
onyms, aggregation, and generalization. In Figure 1.2 [step

Figure 1.2 Life cycle results, step-by-step

Step I  Requirements Analysis (reality)

Step II  Logical design
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Orders
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Step II(b)  View integration
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fororder
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6 CHAPTER 1 Introduction

II(b)], two possible views of the product/customer database
are merged into a single global view based on common data
for customer and order. View integration is also important for
application integration.

c.Transformation of the conceptual data model to SQL tables. Based
on a categorization of data modeling constructs and a set of
mapping rules, each relationship and its associated entities
are transformed into a set of DBMS-specific candidate rela-
tional tables. We will show these transformations in stan-
dard SQL in Chapter 5. Redundant tables are eliminated as
part of this process. In our example, the tables in step II(c) of
Figure 1.2 are the result of transformation of the integrated
ER model in step II(b). 

d.Normalization of tables. Functional dependencies (FDs) are
derived from the conceptual data model diagram and the
semantics of data relationships in the requirements analysis.
They represent the dependencies among data elements that
are unique identifiers (keys) of entities. Additional FDs that
represent the dependencies among key and nonkey attributes
within entities can be derived from the requirements specifi-
cation. Candidate relational tables associated with all derived
FDs are normalized (i.e., modified by decomposing or split-
ting tables into smaller tables) using standard techniques.
Finally, redundancies in the data in normalized candidate
tables are analyzed further for possible elimination, with the
constraint that data integrity must be preserved. An example
of normalization of the Salesperson table into the new
Salesperson and SalesVacations tables is shown in Figure
1.2 from step II(c) to step II(d). 

We note here that database tool vendors tend to use the
term logical model to refer to the conceptual data model, and
they use the term physical model to refer to the DBMS-specific
implementation model (e.g., SQL tables). Note also that many
conceptual data models are obtained not from scratch, but
from the process of reverse engineering from an existing DBMS-
specific schema [Silberschatz, Korth, and Sudarshan, 2002].

III. Physical design. The physical design step involves the selec-
tion of indexes (access methods), partitioning, and clustering of
data. The logical design methodology in step II simplifies the
approach to designing large relational databases by reducing the
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1.2 The Database Life Cycle 7

number of data dependencies that need to be analyzed. This is
accomplished by inserting conceptual data modeling and inte-
gration steps [steps II(a) and II(b) of Figure 1.2] into the tradi-

Figure 1.2 (continued)

Step III  Physical design

Step   II(c)  Transformation of the conceptual model to SQL tables

Step II(d)  Normalization of SQL tables

Customer

Product

prod-no prod-name qty-in-stock

cust-no

sales-name

sales-name

addr

addr

dept

dept

job-level

job-level job-level

vacation-days

vacation-days

Order-product

order-no prod-no

Order

order-no sales-name cust-no

cust-name . . .

Salesperson

Decomposition of tables and removal of update anomalies

Indexing
Clustering
Partitioning
Materialized views
Denormalization

Salesperson Sales-vacations

create table customer 
     (cust_no integer,
     cust_name char(15),
     cust_addr char(30),
     sales_name char(15),
     prod_no integer,
     primary key (cust_no),
     foreign key (sales_name)
          references salesperson
     foreign key (prod_no)
          references product);
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8 CHAPTER 1 Introduction

tional relational design approach. The objective of these steps is
an accurate representation of reality. Data integrity is preserved
through normalization of the candidate tables created when the
conceptual data model is transformed into a relational model.
The purpose of physical design is to optimize performance as
closely as possible. 

As part of the physical design, the global schema can some-
times be refined in limited ways to reflect processing (query and
transaction) requirements if there are obvious, large gains to be
made in efficiency. This is called denormalization. It consists of
selecting dominant processes on the basis of high frequency,
high volume, or explicit priority; defining simple extensions to
tables that will improve query performance; evaluating total cost
for query, update, and storage; and considering the side effects,
such as possible loss of integrity. This is particularly important
for Online Analytical Processing (OLAP) applications.

IV. Database implementation, monitoring, and modifica-
tion. Once the design is completed, the database can be created
through implementation of the formal schema using the data
definition language (DDL) of a DBMS. Then the data manipula-
tion language (DML) can be used to query and update the data-
base, as well as to set up indexes and establish constraints, such
as referential integrity. The language SQL contains both DDL
and DML constructs; for example, the create table command rep-
resents DDL, and the select command represents DML. 

As the database begins operation, monitoring indicates
whether performance requirements are being met. If they are
not being satisfied, modifications should be made to improve
performance. Other modifications may be necessary when
requirements change or when the end users’ expectations
increase with good performance. Thus, the life cycle continues
with monitoring, redesign, and modifications. In the next two
chapters we look first at the basic data modeling concepts and
then—starting in Chapter 4—we apply these concepts to the
database design process. 

1.3 Conceptual Data Modeling

Conceptual data modeling is the driving component of logical database
design. Let us take a look at how this component came about, and why
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1.3 Conceptual Data Modeling 9

it is important. Schema diagrams were formalized in the 1960s by
Charles Bachman. He used rectangles to denote record types and
directed arrows from one record type to another to denote a one-to-
many relationship among instances of records of the two types. The
entity-relationship (ER) approach for conceptual data modeling, one of
the two approaches emphasized in this book and described in detail in
Chapter 2, was first presented in 1976 by Peter Chen. The Chen form of
the ER model uses rectangles to specify entities, which are somewhat
analogous to records. It also uses diamond-shaped objects to represent
the various types of relationships, which are differentiated by numbers
or letters placed on the lines connecting the diamonds to the rectangles. 

The Unified Modeling Language (UML) was introduced in 1997 by
Grady Booch and James Rumbaugh and has become a standard graphi-
cal language for specifying and documenting large-scale software sys-
tems. The data modeling component of UML (now UML-2) has a great
deal of similarity with the ER model and will be presented in detail in
Chapter 3. We will use both the ER model and UML to illustrate the data
modeling and logical database design examples throughout this book.

In conceptual data modeling, the overriding emphasis is on simplic-
ity and readability. The goal of conceptual schema design, where the ER
and UML approaches are most useful, is to capture real-world data
requirements in a simple and meaningful way that is understandable by
both the database designer and the end user. The end user is the person
responsible for accessing the database and executing queries and updates
through the use of DBMS software, and therefore has a vested interest in
the database design process. 

The ER model has two levels of definition—one that is quite simple
and another that is considerably more complex. The simple level is the
one used by most current design tools. It is quite helpful to the database
designer who must communicate with end users about their data require-
ments. At this level you simply describe, in diagram form, the entities,
attributes, and relationships that occur in the system to be conceptual-
ized, using semantics that are definable in a data dictionary. Specialized
constructs, such as “weak” entities or mandatory/optional existence
notation, are also usually included in the simple form. But very little else
is included, to avoid cluttering up the ER diagram while the designer’s
and end user’s understandings of the model are being reconciled. 

An example of a simple form of ER model using the Chen notation is
shown in Figure 1.3. In this example, we want to keep track of video-
tapes and customers in a video store. Videos and customers are repre-
sented as entities Video and Customer, and the relationship “rents”

Teorey.book  Page 9  Saturday, July 16, 2005  12:57 PM



10 CHAPTER 1 Introduction

shows a many-to-many association between them. Both Video and Cus-
tomer entities have a few attributes that describe their characteristics,
and the relationship “rents” has an attribute due date that represents
the date that a particular video rented by a specific customer must be
returned.

From the database practitioner’s standpoint, the simple form of the
ER model (or UML) is the preferred form for both data modeling and end
user verification. It is easy to learn and applicable to a wide variety of
design problems that might be encountered in industry and small busi-
nesses. As we will demonstrate, the simple form can be easily translated
into SQL data definitions, and thus it has an immediate use as an aid for
database implementation. 

The complex level of ER model definition includes concepts that go
well beyond the simple model. It includes concepts from the semantic
models of artificial intelligence and from competing conceptual data
models. Data modeling at this level helps the database designer capture
more semantics without having to resort to narrative explanations. It is
also useful to the database application programmer, because certain
integrity constraints defined in the ER model relate directly to code—
code that checks range limits on data values and null values, for exam-
ple. However, such detail in very large data model diagrams actually
detracts from end user understanding. Therefore, the simple level is
recommended as the basic communication tool for database design
verification. 

Figure 1.3 A simple form of ER model using the Chen notation

due-datecust-id

cust-name

N N
Customer Video

video-id

copy-no
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1.4 Summary 

Knowledge of data modeling and database design techniques is impor-
tant for database practitioners and application developers. The database
life cycle shows the steps needed in a methodical approach to designing
a database,, from logical design, which is independent of the system
environment, to physical design, which is based on the details of the
database management system chosen to implement the database.
Among the variety of data modeling approaches, the ER and UML data
models are arguably the most popular ones in use today, due to their
simplicity and readability. A simple form of these models is used in most
design tools; it is easy to learn and to apply to a variety of industrial and
business applications. It is also a very useful tool for communicating
with the end user about the conceptual model and for verifying the
assumptions made in the modeling process. A more complex form, a
superset of the simple form, is useful for the more experienced designer
who wants to capture greater semantic detail in diagram form, while
avoiding having to write long and tedious narrative to explain certain
requirements and constraints.

1.5 Literature Summary

Much of the early data modeling work was done by Bachman [1969,
1972], Chen [1976], Senko et al. [1973], and others. Database design
textbooks that adhere to a significant portion of the relational database
life cycle described in this chapter are Teorey and Fry [1982], Muller
[1999], Stephens and Plew [2000], Simsion and Witt [2001], and Hernan-
dez and Getz [2003]. Temporal (time-varying) databases are defined and
discussed in Jensen and Snodgrass [1996] and Snodgrass [2000]. Other
well used approaches for conceptual data modeling include IDEF1X
[Bruce, 1992; IDEF1X, 2005] and the data modeling component of the
Zachmann Framework [Zachmann, 1987; Zachmann Institute for Frame-
work Advancement, 2005]. Schema evolution during development, a
frequently occurring problem, is addressed in Harriman, Hodgetts, and
Leo [2004].

Teorey.book  Page 11  Saturday, July 16, 2005  12:57 PM



Teorey.book  Page 12  Saturday, July 16, 2005  12:57 PM



13

2The Entity-Relationship Model 

his chapter defines all the major entity-relationship (ER) concepts
that can be applied to the conceptual data modeling phase of the

database life cycle. In Section 2.1, we will look at the simple level of ER
modeling described in the original work by Chen and extended by oth-
ers. The simple form of the ER model is used as the basis for effective
communication with the end user about the conceptual database. Sec-
tion 2.2 presents the more advanced concepts; although they are less
generally accepted, they are useful to describe certain semantics that
cannot be constructed with the simple model. 

2.1 Fundamental ER Constructs

2.1.1 Basic Objects: Entities, Relationships, Attributes

The basic ER model consists of three classes of objects: entities, relation-
ships, and attributes. 

Entities

Entities are the principal data objects about which information is to be
collected; they usually denote a person, place, thing, or event of infor-
mational interest. A particular occurrence of an entity is called an entity
instance or sometimes an entity occurrence. In our example, employee,

T
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14 CHAPTER 2 The Entity-Relationship Model 

department, division, project, skill, and location are all examples of enti-
ties. For easy reference, entity names will henceforth be capitalized
throughout this text (e.g., Employee, Department, and so forth). The
entity construct is a rectangle as depicted in Figure 2.1. The entity name
is written inside the rectangle. 

Relationships

Relationships represent real-world associations among one or more enti-
ties, and, as such, have no physical or conceptual existence other than
that which depends upon their entity associations. Relationships are
described in terms of degree, connectivity, and existence. These terms
are defined in the sections that follow. The most common meaning asso-
ciated with the term relationship is indicated by the connectivity
between entity occurrences: one-to-one, one-to-many, and many-to-
many. The relationship construct is a diamond that connects the associ-

Figure 2.1 The basic ER model
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2.1 Fundamental ER Constructs 15

ated entities, as shown in Figure 2.1. The relationship name can be writ-
ten inside or just outside the diamond. 

A role is the name of one end of a relationship when each end needs
a distinct name for clarity of the relationship. In most of the examples
given in Figure 2.2, role names are not required because the entity
names combined with the relationship name clearly define the individ-
ual roles of each entity in the relationship. However, in some cases role
names should be used to clarify ambiguities. For example, in the first
case in Figure 2.2, the recursive binary relationship “manages” uses two
roles, “manager” and “subordinate,” to associate the proper connectivi-
ties with the two different roles of the single entity. Role names are typi-
cally nouns. In this diagram, one employee’s role is to be the “manager”
of up to n other employees. The other role is for particular “subordi-
nates” to be managed by exactly one other employee.

Attributes

Attributes are characteristics of entities that provide descriptive detail
about them. A particular occurrence of an attribute within an entity or
relationship is called an attribute value. Attributes of an entity such as
Employee may include emp-id, emp-name, emp-address, phone-no, fax-
no, job-title, and so on. The attribute construct is an ellipse with the
attribute name inside (or an oblong, as shown in Figure 2.1). The
attribute is connected to the entity it characterizes. 

There are two types of attributes: identifiers and descriptors. An iden-
tifier (or key) is used to uniquely determine an instance of an entity; a
descriptor (or nonkey attribute) is used to specify a nonunique charac-
teristic of a particular entity instance. Both identifiers and descriptors
may consist of either a single attribute or some composite of attributes.
For example, an identifier or key of Employee is emp-id, and a descriptor
of Employee is emp-name or job-title. Key attributes are underlined in
the ER diagram, as shown in Figure 2.1. We note, briefly, that you can
have more than one identifier (key) for an entity, or you can have a set
of attributes that compose a key (see Section 6.1.2).

Some attributes, such as specialty-area, may be multivalued. The
notation for multivalued attributes is a double attachment line, as
shown in Figure 2.1. Other attributes may be complex, such as an
address that further subdivides into street, city, state, and zip code. Com-
plex attributes are constructed to have attributes of their own; some-
times, however, the individual parts of a complex attribute are specified
as individual attributes in the first place. Either form is reasonable in ER
notation. 
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16 CHAPTER 2 The Entity-Relationship Model 

Entities have internal identifiers that uniquely determine the exist-
ence of entity instances, but weak entities derive their identity from the
identifying attributes of one or more “parent” entities. Weak entities are
often depicted with a double-bordered rectangle (see Figure 2.1), which
denotes that all occurrences of that entity depend on an associated
(strong) entity for their existence in the database. For example, in Figure
2.1, the weak entity Employee-job-history is related to the entity
Employee and dependent upon Employee for its own existence. 

2.1.2 Degree of a Relationship

The degree of a relationship is the number of entities associated in the
relationship. Binary and ternary relationships are special cases where the
degrees are 2 and 3, respectively. An n-ary relationship is the general
form for any degree n. The notation for degree is illustrated in Figure 2.2.
The binary relationship, an association between two entities, is by far
the most common type in the natural world. In fact, many modeling
systems use only this type. In Figure 2.2, we see many examples of the
association of two entities in different ways: Department and Division,
Department and Employee, Employee and Project, and so on. A binary
recursive relationship (for example, “manages” in Figure 2.2) relates a
particular Employee to another Employee by management. It is called
recursive because the entity relates only to another instance of its own
type. The binary recursive relationship construct is a diamond with both
connections to the same entity. 

A ternary relationship is an association among three entities. This
type of relationship is required when binary relationships are not suffi-
cient to accurately describe the semantics of the association. The ternary
relationship construct is a single diamond connected to three entities, as
shown in Figure 2.2. Sometimes a relationship is mistakenly modeled as
ternary when it could be decomposed into two or three equivalent binary
relationships. When this occurs, the ternary relationship should be elimi-
nated to achieve both simplicity and semantic purity. Ternary relation-
ships are discussed in greater detail in Section 2.2.3 and Chapter 6. 

An entity may be involved in any number of relationships, and each
relationship may be of any degree. Furthermore, two entities may have
any number of binary relationships between them, and so on for any n
entities (see n-ary relationships defined in Section 2.2.4). 
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Figure 2.2 Degrees, connectivity, and attributes of a relationship
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18 CHAPTER 2 The Entity-Relationship Model 

2.1.3 Connectivity of a Relationship 

The connectivity of a relationship describes a constraint on the connec-
tion of the associated entity occurrences in the relationship. Values for
connectivity are either “one” or “many.” For a relationship between the
entities Department and Employee, a connectivity of one for Depart-
ment and many for Employee means that there is at most one entity
occurrence of Department associated with many occurrences of
Employee. The actual count of elements associated with the connectiv-
ity is called the cardinality of the relationship connectivity; it is used
much less frequently than the connectivity constraint because the actual
values are usually variable across instances of relationships. Note that
there are no standard terms for the connectivity concept, so the reader is
admonished to consider the definition of these terms carefully when
using a particular database design methodology.

Figure 2.2 shows the basic constructs for connectivity for binary rela-
tionships: one-to-one, one-to-many, and many-to-many. On the “one”
side, the number one is shown on the connection between the relation-
ship and one of the entities, and on the “many” side, the letter N is used
on the connection between the relationship and the entity to designate
the concept of many.

In the one-to-one case, the entity Department is managed by exactly
one Employee, and each Employee manages exactly one Department.
Therefore, the minimum and maximum connectivities on the “is-man-
aged-by” relationship are exactly one for both Department and
Employee. 

In the one-to-many case, the entity Department is associated with
(“has”) many Employees. The maximum connectivity is given on the
Employee (many) side as the unknown value N, but the minimum con-
nectivity is known as one. On the Department side the minimum and
maximum connectivities are both one, that is, each Employee works
within exactly one Department. 

In the many-to-many case, a particular Employee may work on
many Projects and each Project may have many Employees. We see that
the maximum connectivity for Employee and Project is N in both direc-
tions, and the minimum connectivities are each defined (implied) as
one. 

Some situations, though rare, are such that the actual maximum
connectivity is known. For example, a professional basketball team may
be limited by conference rules to 12 players. In such a case, the number
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2.1 Fundamental ER Constructs 19

12 could be placed next to an entity called “team members” on the
many side of a relationship with an entity “team.” Most situations, how-
ever, have variable connectivity on the many side, as shown in all the
examples of Figure 2.2.

2.1.4 Attributes of a Relationship

Attributes can be assigned to certain types of relationships as well as to
entities. An attribute of a many-to-many relationship, such as the
“works-on” relationship between the entities Employee and Project (Fig-
ure 2.2), could be “task-assignment” or “start-date.” In this case, a given
task assignment or start date only has meaning when it is common to an
instance of the assignment of a particular Employee to a particular
Project via the relationship “works-on.” 

Attributes of relationships are typically assigned only to binary
many-to-many relationships and to ternary relationships. They are not
normally assigned to one-to-one or one-to-many relationships, because
of potential ambiguities. For example, in the one-to-one binary relation-
ship “is-managed-by” between Department and Employee, an attribute
“start-date” could be applied to Department to designate the start date
for that department. Alternatively, it could be applied to Employee as an
attribute for each Employee instance, to designate the employee’s start
date as the manager of that department. If, instead, the relationship is
many-to-many, so that an employee can manage many departments
over time, then the attribute “start-date” must shift to the relationship,
so each instance of the relationship that matches one employee with
one department can have a unique start date for that employee as man-
ager of that department. 

2.1.5 Existence of an Entity in a Relationship

Existence of an entity occurrence in a relationship is defined as either
mandatory or optional. If an occurrence of either the “one” or “many”
side entity must always exist for the entity to be included in the relation-
ship, then it is mandatory. When an occurrence of that entity need not
always exist, it is considered optional. For example, in Figure 2.2 the
entity Employee may or may not be the manager of any Department,
thus making the entity Department in the “is-managed-by” relationship
between Employee and Department optional. 
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20 CHAPTER 2 The Entity-Relationship Model 

Optional existence, defined by a zero on the connection line between
an entity and a relationship, defines a minimum connectivity of zero.
Mandatory existence defines a minimum connectivity of one. When exist-
ence is unknown, we assume the minimum connectivity is one (that is,
mandatory). 

Maximum connectivities are defined explicitly on the ER diagram
as a constant (if a number is shown on the ER diagram next to an
entity) or a variable (by default if no number is shown on the ER dia-
gram next to an entity). For example, in Figure 2.2, the relationship
“is-occupied-by” between the entity Office and Employee implies that
an Office may house from zero to some variable maximum (N) number
of Employees, but an Employee must be housed in exactly one Office,
that is, mandatory. 

Existence is often implicit in the real world. For example, an entity
Employee associated with a dependent (weak) entity, Dependent, can-
not be optional, but the weak entity is usually optional. Using the con-
cept of optional existence, an entity instance may be able to exist in
other relationships even though it is not participating in this particular
relationship. 

The term existence is also associated with identification of a data
object. Many DBMSs provide unique identifiers for rows (Oracle ROW-
IDs, for example). Identifying an object such as a row can be done in an
existence-based way. It can also be done in a value-based way by identi-
fying the object (row) with the values of one or more attributes or col-
umns of the table.

2.1.6 Alternative Conceptual Data Modeling Notations 

At this point we need to digress briefly to look at other conceptual data
modeling notations that are commonly used today and compare them
with the Chen approach. A popular alternative form for one-to-many
and many-to-many relationships uses “crow’s-foot” notation for the
“many” side (see Figure 2.3a). This form is used by some CASE tools,
such as Knowledgeware’s Information Engineering Workbench (IEW).
Relationships have no explicit construct but are implied by the connec-
tion line between entities and a relationship name on the connection
line. Minimum connectivity is specified by either a 0 (for zero) or perpen-
dicular line (for one) on the connection lines between entities. The term
intersection entity is used to designate a weak entity, especially an entity
that is equivalent to a many-to-many relationship. Another popular form
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2.1 Fundamental ER Constructs 21

used today is the IDEFIX notation [IDEF1X, 2005], conceived by Robert
G. Brown [Bruce, 1992]. The similarities with the Chen notation are
obvious in Figure 2.3b. Fortunately, any of these forms is reasonably easy
to learn and read, and their equivalence with the basic ER concepts is
obvious from the diagrams. Without a clear standard for the ER model,
however, many other constructs are being used today in addition to the
three types shown here.  

(a)

Figure 2.3 Conceptual data modeling notations
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(b)

Figure 2.3 (continued)
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2.2 Advanced ER Constructs

2.2.1 Generalization: Supertypes and Subtypes

The original ER model has been effectively used for communicating fun-
damental data and relationship definitions with the end user for a long
time. However, using it to develop and integrate conceptual models with
different end user views was severely limited until it could be extended
to include database abstraction concepts such as generalization. The gen-
eralization relationship specifies that several types of entities with cer-
tain common attributes can be generalized into a higher-level entity
type—a generic or superclass entity, more commonly known as a super-
type entity. The lower levels of entities—subtypes in a generalization hier-
archy—can be either disjoint or overlapping subsets of the supertype
entity. As an example, in Figure 2.4 the entity Employee is a higher-level

Figure 2.4 Supertypes and subtypes
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abstraction of Manager, Engineer, Technician, and Secretary—all of
which are disjoint types of Employee. The ER model construct for the
generalization abstraction is the connection of a supertype entity with
its subtypes, using a circle and the subset symbol on the connecting
lines from the circle to the subtype entities. The circle contains a letter
specifying a disjointness constraint (see the following discussion). Spe-
cialization, the reverse of generalization, is an inversion of the same con-
cept; it indicates that subtypes specialize the supertype. 

A supertype entity in one relationship may be a subtype entity in
another relationship. When a structure comprises a combination of
supertype/subtype relationships, that structure is called a supertype/sub-
type hierarchy or generalization hierarchy. Generalization can also be
described in terms of inheritance, which specifies that all the attributes
of a supertype are propagated down the hierarchy to entities of a lower
type. Generalization may occur when a generic entity, which we call the
supertype entity, is partitioned by different values of a common
attribute. For example, in Figure 2.4 the entity Employee is a generaliza-
tion of Manager, Engineer, Technician, and Secretary over the attribute
“job-title” in Employee. 

Generalization can be further classified by two important constraints
on the subtype entities: disjointness and completeness. The disjointness
constraint requires the subtype entities to be mutually exclusive. We
denote this type of constraint by the letter “d” written inside the gener-
alization circle (Figure 2.4a). Subtypes that are not disjoint (i.e., that
overlap) are designated by using the letter “o” inside the circle. As an
example, the supertype entity Individual has two subtype entities,
Employee and Customer; these subtypes could be described as overlap-
ping, or not mutually exclusive (Figure 2.4b). Regardless of whether the
subtypes are disjoint or overlapping, they may have additional special
attributes in addition to the generic (inherited) attributes from the
supertype. 

The completeness constraint requires the subtypes to be all-inclu-
sive of the supertype. Thus, subtypes can be defined as either total or
partial coverage of the supertype. For example, in a generalization hier-
archy with supertype Individual and subtypes Employee and Customer,
the subtypes may be described as all-inclusive or total. We denote this
type of constraint by a double line between the supertype entity and
the circle. This is indicated in Figure 2.4b, which implies that the only
types of individuals to be considered in the database are employees and
customers. 
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2.2.2 Aggregation

Aggregation is a form of abstraction between a supertype and subtype
entity that is significantly different from the generalization abstraction.
Generalization is often described in terms of an “is-a” relationship
between the subtype and the supertype—for example, an Employee is an
Individual. Aggregation, on the other hand, is the relationship between
the whole and its parts and is described as a “part-of” relationship—for
example, a report and a prototype software package are both parts of a
deliverable for a contract. Thus, in Figure 2.5, the entity Software-prod-
uct is seen to consist of component parts Program and User’s Guide. The
construct for aggregation is similar to generalization, in that the super-
type entity is connected with the subtype entities with a circle; in this
case, the letter “A” is shown in the circle. However, there are no subset
symbols because the “part-of” relationship is not a subset. Furthermore,
there are no inherited attributes in aggregation; each entity has its own
unique set of attributes. 

2.2.3 Ternary Relationships

Ternary relationships are required when binary relationships are not suf-
ficient to accurately describe the semantics of an association among
three entities. Ternary relationships are somewhat more complex than
binary relationships, however. The ER notation for a ternary relationship
is shown in Figure 2.6 with three entities attached to a single relation-
ship diamond, and the connectivity of each entity is designated as either
“one” or “many.” An entity in a ternary relationship is considered to be
“one” if only one instance of it can be associated with one instance of

Figure 2.5 Aggregation
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each of the other two associated entities. It is “many” if more than one
instance of it can be associated with one instance of each of the other
two associated entities. In either case, it is assumed that one instance of
each of the other entities is given. 

As an example, the relationship “manages” in Figure 2.6c associates
the entities Manager, Engineer, and Project. The entities Engineer and

Figure 2.6 Ternary relationships
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Project are considered “many;” the entity Manager is considered “one.”
This is represented by the following assertions. 

• Assertion 1: One engineer, working under one manager, could
be working on many projects. 

• Assertion 2: One project, under the direction of one manager,
could have many engineers. 

• Assertion 3: One engineer, working on one project, must have
only a single manager 

Figure 2.6  (continued)
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Assertion 3 could also be written in another form, using an arrow
(->) in a kind of shorthand called a functional dependency. For example: 

emp-id, project-name -> mgr-id 

where emp-id is the key (unique identifier) associated with the entity
Engineer, project-name is the key associated with the entity Project, and
mgr-id is the key of the entity Manager. In general, for an n-ary relation-
ship, each entity considered to be a “one” has its key appearing on the
right side of exactly one functional dependency (FD). No entity consid-
ered “many” ever has its key appear on the right side of an FD. 

All four forms of ternary relationships are illustrated in Figure 2.6. In
each case, the number of “one” entities implies the number of FDs used
to define the relationship semantics, and the key of each “one” entity
appears on the right side of exactly one FD for that relationship. 

Ternary relationships can have attributes in the same way that
many-to-many binary relationships can. The values of these attributes
are uniquely determined by some combination of the keys of the entities
associated with the relationship. For example, in Figure 2.6d the rela-
tionship “skill-used” might have the attribute “tool” associated with a
given employee using a particular skill on a certain project, indicating
that a value for tool is uniquely determined by the combination of
employee, skill, and project. 

2.2.4 General n-ary Relationships

Generalizing the ternary form to higher-degree relationships, an n-ary
relationship that describes some association among n entities is repre-
sented by a single relationship diamond with n connections, one to each

Figure 2.7 n-ary relationships.
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entity (see Figure 2.7). The meaning of this form can best be described in
terms of the functional dependencies among the keys of the n associated
entities. There can be anywhere from zero to n FDs, depending on the
number of “one” entities. The collection of FDs that describe an n-ary
relationship must have n components: n – 1 on the left side (determi-
nant) and 1 on the right side. A ternary relationship (n = 3), for example,
has two components on the left and one on the right, as we saw in the
example in Figure 2.6. In a more complex database, other types of FDs
may also exist within an n-ary relationship. When this occurs, the ER
model does not provide enough semantics on its own, and it must be
supplemented with a narrative description of these dependencies. 

2.2.5 Exclusion Constraint

The normal, or default, treatment of multiple relationships is the inclu-
sive OR, which allows any or all of the entities to participate. In some sit-
uations, however, multiple relationships may be affected by the exclusive
OR (exclusion) constraint, which allows at most one entity instance
among several entity types to participate in the relationship with a sin-
gle root entity. For example, in Figure 2.8, suppose the root entity Work-
task has two associated entities, External-project and Internal-project. At
most one of the associated entity instances could apply to an instance of
Work-task. 

Figure 2.8 Exclusion constraint
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is-for
is-

assigned-
to

Work-task

Internal-project

+

A work task can be assigned to
either an external project or an
internal project, but not both.
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2.2.6 Referential Integrity 

We note that a foreign key is an attribute of a table (not necessarily a key
of any kind) that relates to a key in another table. Referential integrity
requires that for every foreign key instance that exists in a table, the row
(and thus the key instance) of the parent table associated with that for-
eign key instance must also exist. The referential integrity constraint has
become integral to relational database design and is usually implied as
requirements for the resulting relational database implementation.
(Chapter 5 discusses the SQL implementation of referential integrity
constraints.)

2.3 Summary

The basic concepts of the ER model and their constructs are described in
this chapter. An entity is a person, place, thing, or event of informa-
tional interest. Attributes are objects that provide descriptive informa-
tion about entities. Attributes may be unique identifiers or nonunique
descriptors. Relationships describe the connectivity between entity
instances: one-to-one, one-to-many, or many-to-many. The degree of a
relationship is the number of associated entities: two (binary), three (ter-
nary), or any n (n-ary). The role (name), or relationship name, defines
the function of an entity in a relationship. 

The concept of existence in a relationship determines whether an
entity instance must exist (mandatory) or not (optional). So, for exam-
ple, the minimum connectivity of a binary relationship—that is, the
number of entity instances on one side that are associated with one
instance on the other side—can either be zero, if optional, or one, if
mandatory. The concept of generalization allows for the implementa-
tion of supertype and subtype abstractions. 

The more advanced constructs in ER diagrams are sporadically used
and have no generally accepted form as yet. They include ternary rela-
tionships, which we define in terms of the FD concept of relational data-
bases; constraints on exclusion; and the implicit constraints from the
relational model, such as referential integrity. 
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2.4 Literature Summary

Most of the notation in this chapter is from Chen’s original ER defini-
tion [Chen, 1976]. The concept of data abstraction was first proposed by
Smith and Smith [1977] and applied to the ER model by Scheuermann,
Scheffner, and Weber [1980], Elmasri and Navathe [2003], Bruce [1992],
IDEF1X [2005], among others. The application of the semantic network
model to conceptual schema design was shown by Bachman [1977],
McKleod and King [1979], Hull and King [1987], and Peckham and
Maryanski [1988].  
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3The Unified Modeling 
Language (UML)

he Unified Modeling Language (UML) is a graphical language for
communicating design specifications for software. The object-ori-

ented software development community created UML to meet the spe-
cial needs of describing object-oriented software design. UML has grown
into a standard for the design of digital systems in general.

There are a number of different types of UML diagrams serving vari-
ous purposes [Rumb05]. The class and activity diagram types are particu-
larly useful for discussing database design issues. UML class diagrams
capture the structural aspects found in database schemas. UML activity
diagrams facilitate discussion on the dynamic processes involved in
database design. This chapter is an overview of the syntax and semantics
of the UML class and activity diagram constructs used in this book.
These same concepts are useful for planning, documenting, discussing
and implementing databases. We are using UML 2.0, although for the
purposes of the class diagrams and activity diagrams shown in this book,
if you are familiar with UML 1.4 or 1.5 you will probably not see any dif-
ferences.

UML class diagrams and entity-relationship (ER) models [Chen,
1976; Chen, 1987] are similar in both form and semantics. The original
creators of UML point out the influence of ER models on the origins of
class diagrams [Rumbaugh, Jacobson, and Booch, 2005]. The influence
of UML has in turn affected the database community. Class diagrams

T
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34 CHAPTER 3 The Unified Modeling Language (UML)

now appear frequently in the database literature to describe database
schemas.

UML activity diagrams are similar in purpose to flowcharts. Processes
are partitioned into constituent activities along with control flow speci-
fications. 

This chapter is organized into three sections. Section 3.l presents
class diagram notation, along with examples. Section 3.2 covers activity
diagram notation, along with illustrative examples. Section 3.3 con-
cludes with a few rules of thumb for UML usage.

3.1 Class Diagrams

A class is a descriptor for a set of objects that share some attributes and/
or operations. We conceptualize classes of objects in our everyday lives.
For example, a car has attributes, such as vehicle identification number
(VIN) and mileage. A car also has operations, such as accelerate and
brake. All cars have these attributes and operations. Individual cars dif-
fer in the details. A given car has its own values for VIN and mileage.
For example, a given car might have VIN 1NXBR32ES3Z126369 and a
mileage of 22,137 miles. Individual cars are objects that are instances of
the class “Car.”

Classes and objects are a natural way of conceptualizing the world
around us. The concepts of classes and objects are also the paradigms
that form the foundation of object-oriented programming. The develop-
ment of object-oriented programming led to the need for a language to
describe object-oriented design, giving rise to UML.

There is a close correspondence between class diagrams in UML and
ER diagrams. Classes are analogous to entities. Database schemas can
be diagrammed using UML. It is possible to conceptualize a database
table as a class. The columns in the table are the attributes, and the
rows are objects of that class. For example, we could have a table
named “Car” with columns named “vin” and “mileage.” Each row in
the table would have values for these columns, representing an indi-
vidual car. A given car might be represented by a row with the value
“1NXBR32ES3Z126369” in the vin column, and 22,137 in the mileage
column.

The major difference between classes and entities is the lack of oper-
ations in entities. Note that the term operation is used here in the UML
sense of the word. Stored procedures, functions, triggers, and constraints
are forms of named behavior that can be defined in databases; however
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these are not associated with the behavior of individual rows. The term
operations in UML refers to the methods inherent in classes of objects.
These behaviors are not stored in the definition of rows within the data-
base. There are no operations named “accelerate” or “brake” associated
with rows in our “Car” table. Classes can be shown with attributes and
no operations in UML, which is the typical usage for database schemas.

3.1.1 Basic Class Diagram Notation

The top of Figure 3.1 illustrates the UML syntax for a class, showing
both attributes and operations. It is also possible to include user-defined
named compartments, such as responsibilities. We will focus on the class
name, attributes, and operations compartments. The UML icon for a
class is a rectangle. When the class is shown with attributes and opera-
tions, the rectangle is subdivided into three horizontal compartments.
The top compartment contains the class name, centered in bold face,
beginning with a capital letter. Typically, class names are nouns. The
middle compartment contains attribute names, left-justified in regular
face, beginning with a lowercase letter. The bottom compartment con-
tains operation names, left-justified in regular face, beginning with a
lowercase letter, ending with a parenthetical expression. The parentheses
may contain arguments for the operation. 

The class notation has some variations reflecting emphasis. Classes
can be written without the attribute compartment and/or the operations
compartment. Operations are important in software. If the software
designer wishes to focus on the operations, the class can be shown with
only the class name and operations compartments. Showing operations
and hiding attributes is a very common syntax used by software design-
ers. Database designers, on the other hand, do not generally deal with
class operations; however, the attributes are of paramount importance.
The needs of the database designer can be met by writing the class with
only the class name and attribute compartments showing. Hiding opera-
tions and showing attributes is an uncommon syntax for a software
designer, but it is common for database design. Lastly, in high-level dia-
grams, it is often desirable to illustrate the relationships of the classes
without becoming entangled in the details of the attributes and opera-
tions. Classes can be written with just the class name compartment
when simplicity is desired.

Various types of relationships may exist between classes. Associations
are one type of relationship. The most generic form of association is
drawn with a line connecting two classes. For example, in Figure 3.1
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36 CHAPTER 3 The Unified Modeling Language (UML)

there is an association between the class “Car” and the class named
“Driver.”

A few types of associations, such as aggregation and composition, are
very common. UML has designated symbols for these associations.
Aggregation indicates “part of” associations, where the parts have an
independent existence. For example, a Car may be part of a Car Pool.
The Car also exists on its own, independent of any Car Pool. Another
distinguishing feature of aggregation is that the part may be shared

Figure 3.1 Basic UML class diagram constructs
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among multiple objects. For example, a Car may belong to more than
one Car Pool. The aggregation association is indicated with a hollow dia-
mond attached to the class that holds the parts. Figure 3.1 indicates that
a Car Pool aggregates Cars.

Composition is another “part of” association in which the parts are
strictly owned, not shared. For example, a Frame is part of a single Car.
The notation for composition is an association adorned with a solid
black diamond attached to the class that owns the parts. Figure 3.1 indi-
cates that a Frame is part of the composition of a Car.

Generalization is another common relationship. For example, Sedan
is a type of car. The “Car” class is more general than the “Sedan” class.
Generalization is indicated by a solid line adorned with a hollow arrow-
head pointing to the more general class. Figure 3.1 shows generalization
from the Sedan class to the Car class.

3.1.2 Class Diagrams for Database Design

The reader may be interested in the similarities and differences between
UML class diagrams and ER models. Figures 3.2 through 3.5 parallel
some of the figures in Chapter 2, allowing for easy comparison. We then
turn our attention to capturing primary key information in Figure 3.6.
We conclude this section with an example database schema of the music
industry, illustrated by Figures 3.7 through 3.10.

Figure 3.2 illustrates UML constructs for relationships with various
degrees of association and multiplicities. These examples are parallel to
the ER models shown in Figure 2.2. You may refer back to Figure 2.2 if
you wish to contrast UML constructs with ER constructs.

Associations between classes may be reflexive, binary or n-ary. Reflex-
ive association is a term we are carrying over from ER modeling. It is not a
term defined in UML, although it is worth discussing. Reflexive associa-
tion relates a class to itself. The reflexive association in Figure 3.2 means
an Employee in the role of manager is associated with many managed
Employees. The roles of classes in a relationship may be indicated at the
ends of the relationship. The number of objects involved in the relation-
ship, referred to as multiplicity, may also be specified at the ends of the
relationship. An asterisk indicates that many objects take part in the
association at that end of the relationship. The multiplicities of the
reflexive association example in Figure 3.2 indicate that an Employee is
associated with one manager, and a manager is associated with many
managed Employees.
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A binary association is a relationship between two classes. For exam-
ple, one Division has many Departments. Notice the solid black diamond
at the Division end of the relationship. The solid diamond is an adorn-

Figure 3.2 Selected UML relationship types (parallel to Figure 2.2)
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ment to the associations that indicates composition. The Division is com-
posed of Departments.

The ternary relationship in Figure 3.2 is an example of an n-ary asso-
ciation—an association that relates three or more classes. All classes par-
taking in the association are connected to a hollow diamond. Roles and/
or multiplicities are optionally indicated at the ends of the n-ary associa-
tion. Each end of the ternary association example in Figure 3.2 is marked
with an asterisk, signifying many. The meaning of each multiplicity is
isolated from the other multiplicities. Given a class, if you have exactly
one object from every other class in the association, the multiplicity is
the number of associated objects for the given class. One Employee
working on one Project assignment uses many Skills. One Employee uses
one Skill on many Project assignments. One Skill used on one Project is
fulfilled by many Employees.

The next three class diagrams in Figure 3.2 show various combina-
tions of multiplicities. The illustrated one-to-one association specifies
that each Department is associated with exactly one Employee acting in
the role of manager, and each manager is associated with exactly one
Department. The diagram with the one-to-many association means that
each Department has many Employees, and each Employee belongs to
exactly one Department.

The many-to-many example in Figure 3.2 means each Employee
associates with many Projects, and each Project associates with many
Employees. This example also illustrates the use of an association class.
If an association has attributes, these are written in a class that is
attached to the association with a dashed line. The association class
named “WorkAssignment” in Figure 3.2 contains two association
attributes named “task-assignment” and “start-date.” The association
and the class together form an association class.

Multiplicity can be a range of integers, written with the minimum
and maximum values separated by two periods. The asterisk by itself car-
ries the same meaning as the range [0 .. *]. Also, if the minimum and
maximum are the same number, then the multiplicity can be written as
a single number. For example, [1 .. 1] means the same as [1]. Optional
existence can be specified using a zero. The [0 .. 1] in the optional exist-
ence example of Figure 3.2 means an Employee in the role of manager is
associated with either no Department (e.g., is upper management), or
one Department.

Mandatory existence is specified whenever a multiplicity begins with
a positive integer. The example of mandatory existence in Figure 3.2
means an Employee is an occupant of exactly one Office. One end of an
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association can indicate mandatory existence, while the other end may
use optional existence. This is the case in the example, where an Office
may have any number of occupants, including zero.

Generalization is another type of relationship; a superclass is a gener-
alization of a subclass. Specialization is the opposite of generalization; a
subclass is a specialization of the superclass. The generalization relation-
ship in UML is written with a hollow arrow pointing from the subclass
to the generalized superclass. The top example in Figure 3.3 shows four
subclasses: Manager, Engineer, Technician, and Secretary. These four
subclasses are all specializations of the more general superclass
Employee; that is, Managers, Engineers, Technicians, and Secretaries are
types of Employees.

Notice the four relationships share a common arrowhead. Semanti-
cally, these are still four separate relationships. The sharing of the arrow-
head is permissible in UML, to improve the clarity of the diagrams.

The bottom example in Figure 3.3 illustrates that a class can act as
both a subclass in one relationship, and a superclass in another relation-

Figure 3.3 UML generalization constructs (parallel to Figure 2.4)
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ship. The class named Individual is a generalization of the Employee and
Customer classes. The Employee and Customer classes are in turn super-
classes of the EmpCust class. A class can be a subclass in more than one
generalization relationship. The meaning in the example is that an Emp-
Cust object is both an Employee and a Customer.

You may occasionally find that UML doesn’t supply a standard sym-
bol for what you are attempting to communicate. UML incorporates
some extensibility to accommodate user needs, such as a note. A note in
UML is written as a rectangle with a dog-eared upper right corner. The
note can attach to the pertinent element(s) with a dashed line(s). Write
briefly in the note what you wish to convey. The bottom diagram in Fig-
ure 3.3 illustrates a note, which describes the Employee and Customer
classes as the “Complete enumeration of subclasses.”

The distinction between composition and aggregation is sometimes
elusive for those new to UML. Figure 3.4 shows an example of each, to
help clarify. The top diagram means that a Program and Electronic Doc-
umentation both contribute to the composition of a Software Product.
The composition signifies that the parts do not exist without the Soft-
ware Product (there is no software pirating in our ideal world). The bot-
tom diagram specifies that a Teacher and a Textbook are aggregated by a
course. The aggregation signifies that the Teacher and the Textbook are
part of the Course, but they also exist separately. If a Course is canceled,
the Teacher and the Textbook continue to exist. 

Figure 3.4 UML aggregation constructs (parallel to Figure 2.5)
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Figure 3.5 illustrates another example of a n-ary relationship. The n-
ary relationship may be clarified by specifying roles next to the partici-
pating classes. A Student is an enrollee in a class, associated with a given
Room location, scheduled Day, and meeting Time. 

The concept of a primary key arises in the context of database
design. Often, each row of a table is uniquely identified by the values
contained in one or more columns designated as the primary key.
Objects in software are not typically identified in this fashion. As a
result, UML does not have an icon representing a primary key. However,
UML is extensible. The meaning of an element in UML may be extended

Figure 3.5 UML n-ary relationship (parallel to Figure 2.7)
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with a stereotype. Stereotypes are depicted with a short natural language
word or phrase, enclosed in guillemets: « and ». We take advantage of
this extensibility, using a stereotype «pk» to designate primary key
attributes. Figure 3.6 illustrates the stereotype mechanism. The vin
attribute is specified as the primary key for Cars. This means that a given
vin identifies a specific Car. A noteworthy rule of thumb for primary
keys: when a composition relationship exists, the primary key of the
part includes the primary key of the owning object. The second diagram
in Figure 3.6 illustrates this point.

3.1.3 Example from the Music Industry

Large database schemas may be introduced with high-level diagrams.
Details can be broken out in additional diagrams. The overall goal is to
present ideas in a clear, organized fashion. UML offers notational varia-
tions and organizational mechanism. You will sometimes find that
there are multiple ways of representing the same material in UML. The
decisions you make with regard to your representation depend in part
on your purpose for a given diagram. Figures 3.7 through 3.10 illus-
trate some of the possibilities, with an example drawn from the music
industry. 

Packages may be used to organize classes into groups. Packages may
themselves also be grouped into packages. The goal of using packages is
to make the overall design of a system more comprehensible. One use
for packages is to represent a schema. You can then show multiple sche-
mas concisely. Another use for packages is to group related classes
together within a schema, and present the schema clearly. Given a set of
classes, different people may conceptualize different groupings. The divi-
sion is a design decision, with no right or wrong answer. Whatever deci-
sions are made, the result should enhance readability. The notation for a
package is a folder icon, and the contents of a package can be optionally
shown in the body of the folder. If the contents are shown, then the
name of the package is placed in the tab. If the contents are elided, then
the name of the package is placed in the body of the icon.

Figure 3.7 Example of related packages

Music Media Distribution
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If the purpose is to illustrate the relationships of the packages, and
the classes are not important at the moment, then it is better to illustrate
with the contents elided. Figure 3.7 illustrates the notation with the
music industry example at a very high level. Music is created and placed
on Media. The Media is then Distributed. There is an association
between Music and Media, and between Media and Distribution.

Let us look at the organization of the classes. The music industry is
illustrated in Figure 3.8 with the classes listed. The Music package con-
tains classes that are responsible for creating the music. Examples of
Groups are the Beatles and the Bangles. Sarah McLachlan and Sting are
Artists. Groups and Artists are involved in creating the music. We will
look shortly at the other classes and how they are related. The Media

Figure 3.8 Example illustrating classes grouped into packages

Figure 3.9 Relationships between classes in the music package

Distribution

Studio
Publisher
RetailStore

Media

MusicMedia
Album
CD
Track

Music

Group
Artist
Composer
Lyricist
Musician
Instrument
Song
Rendition

Artist

Instrument

Song

Group

0 .. *

1 .. *1 .. *

2 .. *

1

*

*

*
*

Rendition

MusicianComposer Lyricist

0 .. *1 .. *

Teorey.book  Page 44  Saturday, July 16, 2005  12:57 PM



3.1 Class Diagrams 45

package contains classes that physically hold the recordings of the
music. The Distribution package contains classes that bring the media to
you.

The contents of a package can be expanded into greater detail. The
relationships of the classes within the Music package are illustrated in
Figure 3.9. A Group is an aggregation of two or more Artists. As indicated
by the multiplicity between Artist and Group, [0 .. *], an Artist may or
may not be in a Group, and may be in more than one Group. Compos-
ers, Lyricists, and Musicians are different types of Artists. A Song is asso-
ciated with one or more Composers. A Song may not have any Lyricist,
or any number of Lyricists. A Song may have any number of Renditions.
A Rendition is associated with exactly one Song. A Rendition is associ-
ated with Musicians and Instruments. A given Musician-Instrument
combination is associated with any number of Renditions. A specific
Rendition-Musician combination may be associated with any number of
Instruments. A given Rendition-Instrument combination is associated
with any number of Musicians.

A system can be understood more easily by shifting focus to each
package in turn. We turn our attention now to the classes and relation-
ships in the Media package, shown in Figure 3.10. The associated classes
from the Music and Distribution packages are also shown, detailing how
the Media package is related to the other two packages. The Music Media

Figure 3.10 Classes of the media package and related classes
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is associated with the Group and Artist classes, which are contained in
the Music package shown in Figure 3.8. The Music Media is also associ-
ated with the Publisher, Studio, and Producer classes, which are con-
tained in the Distribution package shown in Figure 3.8. Albums and CDs
are types of Music Media. Albums and CDs are both composed of Tracks.
Tracks are associated with Renditions.

3.2 Activity Diagrams

UML has a full suite of diagram types, each of which fulfills a need for
describing a view of the design. UML activity diagrams are used to specify
the activities and the flow of control in a process. The process may be a
workflow followed by people, organizations, or other physical things.
Alternatively, the process may be an algorithm implemented in software.
The syntax and the semantics of the UML constructs are the same,
regardless of the process described. Our examples draw from workflows
that are followed by people and organizations, since these are more use-
ful for the logical design of databases.

3.2.1 Activity Diagram Notation Description

Activity diagrams include notation for nodes, control flow, and organi-
zation. The icons we are describing here are outlined in Figure 3.11. The
notation is further clarified by example in Section 3.2.2.

The nodes include initial node, final node, and activity node. Any pro-
cess begins with control residing in the initial node, represented as a
solid black circle. The process terminates when control reaches a final
node, represented as a solid black circle surrounded by a concentric cir-
cle (i.e., a bull’s-eye). Activity nodes are states where specified work is
processed. For example, an activity might be named “Generate quote.”
The name of an activity is typically a descriptive verb or short verb
phrase, written inside a lozenge shape. Control resides in an activity
until that activity is completed. Then control follows the outgoing flow.

Control flow icons include flows, decisions, forks, and joins. A flow is
drawn with an arrow. Control flows in the direction of the arrow. Deci-
sion nodes are drawn as a hollow diamond with multiple outgoing
flows. Each flow from a decision node must have a guard condition. A
guard condition is written in brackets next to the flow. Control flows in
exactly one direction from a decision node, and only follows a flow if
the guard condition is true. The guard conditions associated with a deci-
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sion node must be mutually exclusive, to avoid nondeterministic behav-
ior. There can be no ambiguity as to which direction the control flows.
The guards must cover all possible test conditions, so that control is not
blocked at the decision node. One path may be guarded with [else]. If a
path is guarded by [else], then control flows in that direction only if all
the other guards fail. Forks and joins are both forms of synchronization
written with a solid bar. The fork has one incoming flow and multiple
outgoing flows. When control flows to a fork, the control concurrently

Figure 3.11 UML activity diagram constructs
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follows all the outgoing flows. These are referred to as concurrent
threads. Joins are the opposite of forks; the join construct has multiple
incoming flows and one outgoing flow. Control flows from a join only
when control has reached the join from each of the incoming flows.

Activity diagrams may be further organized using partitions, also
known as swim lanes. Partitions split activities into subsets, organized by
responsible party. Each subset is named and enclosed with lines. 

3.2.2 Activity Diagrams for Workflow

Figure 3.12 illustrates the UML activity diagram constructs used for the
publication of this book. This diagram is partitioned into two subsets of
activities, organized by responsible party: the left subset contains Cus-
tomer activities, and the right subset contains Manufacturer activities.
Activity partitions are sometimes called swim lanes, because of their typ-
ical appearance. Activity partitions may be arranged vertically, horizon-
tally, or in a grid. Curved dividers may be used, although this is atypical.
Activity diagrams can also be written without a partition. The construct
is organizational, and doesn’t carry inherent semantics. The meaning is
suggested by your choice of subset names.

Control begins in the initial state, represented by the solid dot in the
upper-left corner of Figure 3.12. Control flows to the first activity, where
the customer requests a quote (Request quote). Control remains in an
activity until that activity is completed; then the control follows the
outgoing arrow. When the request for a quote is complete, the Manufac-
turer generates a quote (Generate quote). Then the Customer reviews the
quote (Review quote).

The next construct is a branch, represented by a diamond. Each out-
going arrow from a branch has a guard. The guard represents a condition
that must be true in order for control to flow along that path. Guards are
written as short condition descriptions enclosed in brackets. After the
Customer finishes reviewing the quote in Figure 3.12, if it is unaccept-
able the process reaches a final state and terminates. A final state is rep-
resented with a target (the bull’s-eye). If the quote is acceptable, then the
Customer places an order (Place order). The Manufacturer enters (Enter
order), produces (Produce order), and ships the order (Ship order).

At a fork, control splits into multiple concurrent threads. The nota-
tion is a solid bar with one incoming arrow and multiple outgoing
arrows. After the order ships in Figure 3.12, control reaches a fork and
splits into two threads. The Customer receives the order (Receive order).
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In parallel to the Customer receiving the order, the Manufacturer gener-
ates an invoice (Generate invoice), and then the Customer receives the
invoice (Receive invoice). Order of activities between threads is not con-
strained. Thus, the Customer may receive the order before or after the
manufacturer generates the invoice, or even after the Customer receives
the invoice.

At a join, multiple threads merge into a single thread. The notation
is a solid bar with multiple incoming arrows and one outgoing arrow. In

Figure 3.12 UML activity diagram, manufacturing example.

Customer Manufacturer

Generate quoteRequest quote

[acceptable]

Review quote

[unacceptable]

Place order Enter order

Produce order

Ship order

Receive order

Generate invoiceReceive invoice

Pay Record payment
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Figure 3.12, after the Customer receives the order and the invoice, then
the Customer will pay (Pay). All incoming threads must complete before
control continues along the outgoing arrow.

Finally, in Figure 3.12, the Customer pays, the Manufacturer records
the payment (Record payment), and then a final state is reached. Notice
that an activity diagram may have multiple final states. However, there
can only be one initial state.

There are at least two uses for activity diagrams in the context of
database design. Activity diagrams can specify the interactions of classes
in a database schema. Class diagrams capture structure, activity diagrams
capture behavior. The two types of diagrams can present complementary
aspects of the same system. For example, one can easily imagine that
Figure 3.12 illustrates the usage of classes named Quote, Order, Invoice,
and Payment. Another use for activity diagrams in the context of data-
base design is to illustrate processes surrounding the database. For exam-
ple, database life cycles can be illustrated using activity diagrams.

3.3 Rules of Thumb for UML Usage

1. Decide what you wish to communicate first, and then focus your
description. Illustrate the details that further your purpose, and
elide the rest. UML is like any other language in that you can
immerse yourself in excruciating detail and lose your main pur-
pose. Be concise.

2. Keep each UML diagram to one page. Diagrams are easier to
understand if they can be seen in one glance. This is not to say
that you must restrict yourself; rather, you should divide and
organize your content into reasonable, understandable portions.
Use packages to organize your presentation. If you have many
brilliant ideas to convey (of course you do!), begin with a high-
level diagram that paints the broad picture. Then follow up with a
diagram dedicated to each of your ideas.

3. Use UML when it is useful. Don’t feel compelled to write a UML
document just because you feel you need a UML document. UML
is not an end in itself, but it is an excellent design tool for appro-
priate problems.

4. Accompany your diagrams with textual descriptions, thereby clar-
ifying your intent. Additionally, remember that some people are
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oriented verbally, others visually. Combining natural language
with UML is effective.

5. Take care to clearly organize each diagram. Avoid crossing associa-
tions. Group elements together if there is a connection in your
mind. Two UML diagrams can contain the exact same elements
and associations, and one might be a jumbled mess, while the
other is elegant and clear. Both convey the same meaning in the
UML, but clearly the elegant version will be more successful at
communicating design issues.

3.4 Summary

The Unified Modeling Language (UML) is a graphical language that is
currently very popular for communicating design specifications for soft-
ware and in particular for logical database designs via class diagrams.
The similarity between UML and the ER model is shown through some
common examples, including ternary relationships and generalization.
UML activity diagrams are used to specify the activities and flow of con-
trol in processes. Use of UML in logical database design is summarized
with five basic rules of thumb.

3.5 Literature Summary

The definitive reference manual for UML is Rumbaugh, Jacobson, and
Booch [2005]. Use Mullins [1999] for more detailed UML database mod-
eling. Other useful UML texts are Naiburg and Maksimchuk [2001], Qua-
trani [2002], and Rumbaugh, Jacobson, and Booch [2004].
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4Requirements Analysis and 
Conceptual Data Modeling

his chapter shows how the ER and UML approaches can be applied
to the database life cycle, particularly in steps I through II(b) (as

defined in Section 1.2), which include the requirements analysis and
conceptual data modeling stages of logical database design. The example
introduced in Chapter 2 is used again to illustrate the ER modeling prin-
ciples developed in this chapter. 

4.1 Introduction 

Logical database design is accomplished with a variety of approaches,
including the top-down, bottom-up, and combined methodologies. The
traditional approach, particularly for relational databases, has been a
low-level, bottom-up activity, synthesizing individual data elements into
normalized tables after carefully analyzing the data element interdepen-
dencies defined during the requirements analysis. Although the tradi-
tional process has been somewhat successful for small- to medium-sized
databases, when used for large databases its complexity can be over-
whelming to the point where practicing designers do not bother to use it
with any regularity. In practice, a combination of the top-down and bot-
tom-up approaches is used; in most cases, tables can be defined directly
from the requirements analysis. 

The conceptual data model has been most successful as a tool for
communication between the designer and the end user during the

T
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requirements analysis and logical design phases. Its success is due to the
fact that the model, using either ER or UML, is easy to understand and
convenient to represent. Another reason for its effectiveness is that it is a
top-down approach using the concept of abstraction. The number of
entities in a database is typically far fewer than the number of individual
data elements, because data elements usually represent the attributes.
Therefore, using entities as an abstraction for data elements and focus-
ing on the relationships between entities greatly reduces the number of
objects under consideration and simplifies the analysis. Though it is still
necessary to represent data elements by attributes of entities at the con-
ceptual level, their dependencies are normally confined to the other
attributes within the entity or, in some cases, to attributes associated
with other entities with a direct relationship to their entity. 

The major interattribute dependencies that occur in data models are
the dependencies between the entity keys, the unique identifiers of differ-
ent entities that are captured in the conceptual data modeling process.
Special cases, such as dependencies among data elements of unrelated
entities, can be handled when they are identified in the ensuing data
analysis. 

The logical database design approach defined here uses both the
conceptual data model and the relational model in successive stages. It
benefits from the simplicity and ease of use of the conceptual data
model and the structure and associated formalism of the relational
model. To facilitate this approach, it is necessary to build a framework
for transforming the variety of conceptual data model constructs into
tables that are already normalized or that can be normalized with a min-
imum of transformation. The beauty of this type of transformation is
that it results in normalized or nearly normalized SQL tables from the
start; frequently, further normalization is not necessary. 

Before we do this, however, we need to first define the major steps of
the relational logical design methodology in the context of the database
life cycle. 

4.2 Requirements Analysis 

Step I, requirements analysis, is an extremely important step in the data-
base life cycle and is typically the most labor intensive. The database
designer must interview the end user population and determine exactly
what the database is to be used for and what it must contain. The basic
objectives of requirements analysis are:
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• To delineate the data requirements of the enterprise in terms of
basic data elements

• To describe the information about the data elements and the rela-
tionships among them needed to model these data requirements

• To determine the types of transactions that are intended to be
executed on the database and the interaction between the trans-
actions and the data elements

• To define any performance, integrity, security, or administrative
constraints that must be imposed on the resulting database

• To specify any design and implementation constraints, such as
specific technologies, hardware and software, programming lan-
guages, policies, standards, or external interfaces

• To thoroughly document all of the preceding in a detailed
requirements specification. The data elements can also be defined
in a data dictionary system, often provided as an integral part of
the database management system

The conceptual data model helps designers accurately capture the
real data requirements because it requires them to focus on semantic
detail in the data relationships, which is greater than the detail that
would be provided by FDs alone. The semantics of the ER model, for
instance, allow for direct transformations of entities and relationships to
at least first normal form (1NF) tables. They also provide clear guidelines
for integrity constraints. In addition, abstraction techniques such as gen-
eralization provide useful tools for integrating end user views to define a
global conceptual schema. 

4.3 Conceptual Data Modeling 

Let us now look more closely at the basic data elements and relation-
ships that should be defined during requirements analysis and concep-
tual design. These two life cycle steps are often done simultaneously. 

Consider the substeps in step II(a), conceptual data modeling, using
the ER model: 

• Classify entities and attributes (classify classes and attributes in
UML)

• Identify the generalization hierarchies (for both the ER model and
UML)
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• Define relationships (define associations and association classes
in UML)

The remainder of this section discusses the tasks involved in each
substep.

4.3.1 Classify Entities and Attributes

Though it is easy to define entity, attribute, and relationship constructs,
it is not as easy to distinguish their roles in modeling the database. What
makes a data element an entity, an attribute, or even a relationship? For
example, project headquarters are located in cities. Should “city” be an
entity or an attribute? A vita is kept for each employee. Is “vita” an
entity or a relationship? 

The following guidelines for classifying entities and attributes will
help the designer’s thoughts converge to a normalized relational data-
base design:

• Entities should contain descriptive information.

• Multivalued attributes should be classified as entities. 

• Attributes should be attached to the entities they most directly
describe. 

Now we examine each guideline in turn. 

Entity Contents

Entities should contain descriptive information. If there is descriptive
information about a data element, the data element should be classified
as an entity. If a data element requires only an identifier and does not
have relationships, it should be classified as an attribute. With “city,” for
example, if there is some descriptive information such as “country” and
“population” for cities, then “city” should be classified as an entity. If
only the city name is needed to identify a city, then “city” should be
classified as an attribute associated with some entity, such as Project. The
exception to this rule is that if the identity of the value needs to be con-
strained by set membership, you should create it as an entity. For exam-
ple, “State” is much the same as city, but you probably want to have a
State entity that contains all the valid State instances. Examples of other
data elements in the real world that are typically classified as entities
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include Employee, Task, Project, Department, Company, Customer, and
so on. 

Multivalued Attributes 

Classify multivalued attributes as entities. If more than one value of a
descriptor attribute corresponds to one value of an identifier, the
descriptor should be classified as an entity instead of an attribute, even
though it does not have descriptors itself. A large company, for example,
could have many divisions, some of them possibly in different cities. In
that case, “division” could be classified as a multivalued attribute of
“company,” but it would be better classified as an entity, with “division-
address” as its identifier. If attributes are restricted to be single valued
only, the later design and implementation decisions will be simplified. 

Attribute Attachment 

Attach attributes to the entities they most directly describe. For example,
“office-building-name” should normally be an attribute of the entity
Department, rather than the entity Employee. The procedure of identify-
ing entities and attaching attributes to entities is iterative. Classify some
data elements as entities and attach identifiers and descriptors to them.
If you find some violation of the preceding guidelines, change some data
elements from entity to attribute (or from attribute to entity), attach
attributes to the new entities, and so forth. 

4.3.2 Identify the Generalization Hierarchies 

If there is a generalization hierarchy among entities, then put the identi-
fier and generic descriptors in the supertype entity and put the same
identifier and specific descriptors in the subtype entities. 

For example, suppose five entities were identified in the ER model
shown in Figure 2.4a:

• Employee, with identifier empno and descriptors empname,
address, and date-of-birth 

• Manager, with identifier empno and descriptors empname and
jobtitle 

• Engineer, with identifier empno and descriptors empname, high-
est-degree and jobtitle
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• Technician, with identifier empno, and descriptors empname and
specialty

• Secretary, with identifier empno, and descriptors empname and
best-skill

Let’s say we determine, through our analysis, that the entity
Employee could be created as a generalization of Manager, Engineer,
Technician, and Secretary. Then we put identifier empno and generic
descriptors empname, address, and date-of-birth in the supertype entity
Employee; identifier empno and specific descriptor jobtitle in the sub-
type entity Manager; identifier empno and specific descriptor highest-
degree and jobtitle in the subtype entity Engineer, etc. Later, if we decide
to eliminate Employee as a table, the original identifiers and generic
attributes can be redistributed to all the subtype tables. (Note that we
put table names in boldface throughout the book for readability.) 

4.3.3 Define Relationships 

We now deal with data elements that represent associations among enti-
ties, which we call relationships. Examples of typical relationships are
“works-in,” “works-for,” “purchases,” “drives,” or any verb that connects
entities. For every relationship, the following should be specified: degree
(binary, ternary, etc.); connectivity (one-to-many, etc.); optional or man-
datory existence; and any attributes associated with the relationship and
not the entities. The following are some guidelines for defining the more
difficult types of relationships. 

Redundant Relationships 

Analyze redundant relationships carefully. Two or more relationships
that are used to represent the same concept are considered redundant.
Redundant relationships are more likely to result in unnormalized tables
when transforming the ER model into relational schemas. Note that two
or more relationships are allowed between the same two entities, as long
as those relationships have different meanings. In this case they are not
considered redundant. One important case of nonredundancy is shown
in Figure 4.1a for the ER model and Figure 4.1c for UML. If “belongs-to”
is a one-to-many relationship between Employee and Professional-asso-
ciation, if “located-in” is a one-to-many relationship between Profes-
sional-association and City, and if “lives-in” is a one-to-many relation-
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Figure 4.1 Redundant relationships
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ship between Employee and City, then “lives-in” is not redundant,
because the relationships are unrelated. However, consider the situation
shown in Figure 4.1b for the ER model and Figure 4.1d for UML. The
employee works on a project located in a city, so the “works-in” relation-
ship between Employee and City is redundant and can be eliminated. 

Ternary Relationships 

Define ternary relationships carefully. We define a ternary relationship
among three entities only when the concept cannot be represented by
several binary relationships among those entities. For example, let us
assume there is some association among entities Technician, Project,
and Notebook. If each technician can be working on any of several
projects and using the same notebooks on each project, then three
many-to-many binary relationships can be defined (see Figure 4.2a for
the ER model and Figure 4.2c for UML). If, however, each technician is

Figure 4.2 Ternary relationships
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constrained to use exactly one notebook for each project and that note-
book belongs to only one technician, then a one-to-one-to-one ternary
relationship should be defined (see Figure 4.2b for the ER model and Fig-
ure 4.2d for UML). The approach to take in ER modeling is to first
attempt to express the associations in terms of binary relationships; if
this is impossible because of the constraints of the associations, try to
express them in terms of a ternary.  

The meaning of connectivity for ternary relationships is important.
Figure 4.2b shows that for a given pair of instances of Technician and
Project, there is only one corresponding instance of Notebook; for a
given pair of instances of Technician and Notebook, there is only one
corresponding instance of Project; and for a given pair of instances of
Project and Notebook, there is only one instance of Technician. In gen-
eral, we know by our definition of ternary relationships that if a relation-
ship among three entities can only be expressed by a functional depen-
dency involving the keys of all three entities, then it cannot be
expressed using only binary relationships, which only apply to associa-
tions between two entities. Object-oriented design provides arguably a
better way to model this situation [Muller, 1999].

4.3.4 Example of Data Modeling: Company Personnel and 
Project Database

ER Modeling of Individual Views Based on Requirements

Let us suppose it is desirable to build a company-wide database for a
large engineering firm that keeps track of all full-time personnel, their
skills and projects assigned, the departments (and divisions) worked in,
the engineer professional associations belonged to, and the engineer
desktop computers allocated. During the requirements collection pro-
cess—that is, interviewing the end users—we obtain three views of the
database. 

The first view, a management view, defines each employee as work-
ing in a single department, and defines a division as the basic unit in the
company, consisting of many departments. Each division and depart-
ment has a manager, and we want to keep track of each manager. The ER
model for this view is shown in Figure 4.3a.

The second view defines each employee as having a job title: engi-
neer, technician, secretary, manager, and so on. Engineers typically
belong to professional associations and might be allocated an engineer-
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ing workstation (or computer). Secretaries and managers are each allo-
cated a desktop computer. A pool of desktops and workstations is main-
tained for potential allocation to new employees and for loans while an
employee’s computer is being repaired. Any employee may be married to
another employee, and we want to keep track of these relationships to
avoid assigning an employee to be managed by his or her spouse. This
view is illustrated in Figure 4.3b. 

The third view, shown in Figure 4.3c, involves the assignment of
employees, mainly engineers and technicians, to projects. Employees
may work on several projects at one time, and each project could be
headquartered at different locations (cities). However, each employee at
a given location works on only one project at that location. Employee
skills can be individually selected for a given project, but no individual
has a monopoly on skills, projects, or locations. 

Figure 4.3 Example of data modeling

is-
managed-by

contains

is-
headed-byhas

1

1

N

1

1

11N

Employee

Department

Division

(a) Management view

Teorey.book  Page 62  Saturday, July 16, 2005  12:57 PM



4.3 Conceptual Data Modeling 63

Figure 4.3 (continued)

(b) Employee view
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Global ER Schema 

A simple integration of the three views over the entity Employee defines
results in the global ER schema (diagram) in Figure 4.3d, which becomes
the basis for developing the normalized tables. Each relationship in the
global schema is based upon a verifiable assertion about the actual data
in the enterprise, and analysis of those assertions leads to the transfor-
mation of these ER constructs into candidate SQL tables, as Chapter 5
shows. 

Note that equivalent views and integration could be done for a UML
conceptual model over the class Employee. We will use the ER model for
the examples in the rest of this chapter, however.

The diagram shows examples of binary, ternary, and binary recursive
relationships; optional and mandatory existence in relationships; and
generalization with the disjointness constraint. Ternary relationships
“skill-used” and “assigned-to” are necessary, because binary relation-
ships cannot be used for the equivalent notions. For example, one
employee and one location determine exactly one project (a functional
dependency). In the case of “skill-used,” selective use of skills to projects
cannot be represented with binary relationships (see Section 6.5). 

The use of optional existence, for instance, between Employee and
Division or between Employee and Department, is derived from our gen-
eral knowledge that most employees will not be managers of any divi-
sion or department. In another example of optional existence, we show
that the allocation of a workstation to an engineer may not always
occur, nor will all desktops or workstations necessarily be allocated to
someone at all times. In general, all relationships, optional existence
constraints, and generalization constructs need to be verified with the
end user before the ER model is transformed to SQL tables.

In summary, the application of the ER model to relational database
design offers the following benefits: 

• Use of an ER approach focuses end users’ discussions on impor-
tant relationships between entities. Some applications are charac-
terized by counterexamples affecting a small number of instances,
and lengthy consideration of these instances can divert attention
from basic relationships. 

• A diagrammatic syntax conveys a great deal of information in a
compact, readily understandable form. 

• Extensions to the original ER model, such as optional and manda-
tory membership classes, are important in many relationships.
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(d)

Figure 4.3 (continued)
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Generalization allows entities to be grouped for one functional
role or to be seen as separate subtypes when other constraints are
imposed. 

• A complete set of rules transforms ER constructs into mostly nor-
malized SQL tables, which follow easily from real-world require-
ments. 

4.4 View Integration 

A critical part of the database design process is step II(b), the integration
of different user views into a unified, nonredundant global schema. The
individual end-user views are represented by conceptual data models,
and the integrated conceptual schema results from sufficient analysis of
the end-user views to resolve all differences in perspective and terminol-
ogy. Experience has shown that nearly every situation can be resolved in
a meaningful way through integration techniques. 

Schema diversity occurs when different users or user groups develop
their own unique perspectives of the world or, at least, of the enterprise
to be represented in the database. For instance, the marketing division
tends to have the whole product as a basic unit for sales, but the engi-
neering division may concentrate on the individual parts of the whole
product. In another case, one user may view a project in terms of its
goals and progress toward meeting those goals over time, but another
user may view a project in terms of the resources it needs and the per-
sonnel involved. Such differences cause the conceptual models to seem
to have incompatible relationships and terminology. These differences
show up in conceptual data models as different levels of abstraction,
connectivity of relationships (one-to-many, many-to-many, and so on),
or as the same concept being modeled as an entity, attribute, or relation-
ship, depending on the user’s perspective. 

As an example of the latter case, in Figure 4.4 we see three different
perspectives of the same real-life situation—the placement of an order
for a certain product. The result is a variety of schemas. The first schema
(Figure 4.4a) depicts Customer, Order, and Product as entities and
“places” and “for-a” as relationships. The second schema (Figure 4.4b),
however, defines “orders” as a relationship between Customer and Prod-
uct and omits Order as an entity altogether. Finally, in the third case
(Figure 4.4c), the relationship “orders” has been replaced by another
relationship, “purchases”; “order-no,” the identifier (key) of an order, is
designated as an attribute of the relationship “purchases.” In other
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words, the concept of order has been variously represented as an entity,
a relationship, and an attribute, depending on perspective. 

There are four basic steps needed for conceptual schema integration: 

1. Preintegration analysis

2. Comparison of schemas

3. Conformation of schemas

4. Merging and restructuring of schemas

4.4.1 Preintegration Analysis 

The first step, preintegration analysis, involves choosing an integration
strategy. Typically, the choice is between a binary approach with two

Figure 4.4 Schemas: placement of an order
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schemas merged at one time and an n-ary approach with n schemas
merged at one time, where n is between 2 and the total number of sche-
mas developed in the conceptual design. The binary approach is attrac-
tive because each merge involves a small number of data model con-
structs and is easier to conceptualize. The n-ary approach may require
only one grand merge, but the number of constructs may be so large
that it is not humanly possible to organize the transformations properly.

4.4.2 Comparison of Schemas 

In the second step, comparison of schemas, the designer looks at how
entities correspond and detects conflicts arising from schema diversity—
that is, from user groups adopting different viewpoints in their respec-
tive schemas. Naming conflicts include synonyms and homonyms. Syn-
onyms occur when different names are given for the same concept;
these can be detected by scanning the data dictionary, if one has been
established for the database. Homonyms occur when the same name is
used for different concepts. These can only be detected by scanning the
different schemas and looking for common names. 

Structural conflicts occur in the schema structure itself. Type con-
flicts involve using different constructs to model the same concept. In
Figure 4.4, for example, an entity, a relationship, or an attribute can be
used to model the concept of order in a business database. Dependency
conflicts result when users specify different levels of connectivity (one-
to-many, etc.) for similar or even the same concepts. One way to resolve
such conflicts might be to use only the most general connectivity—for
example, many-to-many. If that is not semantically correct, change the
names of entities so that each type of connectivity has a different set of
entity names. Key conflicts occur when different keys are assigned to the
same entity in different views. For example, a key conflict occurs if an
employee’s full name, employee ID number, and Social Security number
are all assigned as keys. 

4.4.3 Conformation of Schemas 

The resolution of conflicts often requires user and designer interaction.
The basic goal of the third step is to align or conform schemas to make
them compatible for integration. The entities, as well as the key
attributes, may need to be renamed. Conversion may be required so that
concepts modeled as entities, attributes, or relationships are conformed
to be only one of them. Relationships with equal degree, roles, and con-
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nectivity constraints are easy to merge. Those with differing characteris-
tics are more difficult and, in some cases, impossible to merge. In addi-
tion, relationships that are not consistent—for example, a relationship
using generalization in one place and the exclusive OR in another—
must be resolved. Finally, assertions may need to be modified so that
integrity constraints remain consistent. 

Techniques used for view integration include abstraction, such as
generalization and aggregation to create new supertypes or subtypes, or
even the introduction of new relationships. As an example, the generali-
zation of Individual over different values of the descriptor attribute “job-
title” could represent the consolidation of two views of the database—
one based on an individual as the basic unit of personnel in the organi-
zation, and another based on the classification of individuals by job
titles and special characteristics within those classifications. 

4.4.4 Merging and Restructuring of Schemas 

The fourth step consists of the merging and restructuring of schemas.
This step is driven by the goals of completeness, minimality, and under-
standability. Completeness requires all component concepts to appear
semantically intact in the global schema. Minimality requires the
designer to remove all redundant concepts in the global schema. Exam-
ples of redundant concepts are overlapping entities and truly semanti-
cally redundant relationships; for example, Ground-Vehicle and Auto-
mobile might be two overlapping entities. A redundant relationship
might occur between Instructor and Student. The relationships “direct-
research” and “advise” may or may not represent the same activity or
relationship, so further investigation is required to determine whether
they are redundant or not. Understandability requires that the global
schema make sense to the user. 

Component schemas are first merged by superimposing the same
concepts and then restructuring the resulting integrated schema for
understandability. For instance, if a supertype/subtype combination is
defined as a result of the merging operation, the properties of the sub-
type can be dropped from the schema because they are automatically
provided by the supertype entity. 

4.4.5 Example of View Integration 

Let us look at two different views of overlapping data. The views are
based on two separate interviews of end users. We adapt the interesting
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example cited by Batini, Lenzerini, and Navathe [1986] to a hypothetical
situation related to our example. 

In Figure 4.5a we have a view that focuses on reports and includes
data on departments that publish the reports, topic areas in reports, and
contractors for whom the reports are written. Figure 4.5b shows another
view, with publications as the central focus and keywords on publication
as the secondary data. Our objective is to find meaningful ways to inte-
grate the two views and maintain completeness, minimality, and under-
standability. 

We first look for synonyms and homonyms, particularly among the
entities. Note that a synonym exists between the entities Topic-area in
schema 1 and Keyword in schema 2, even though the attributes do not

Figure 4.5 View integration: find meaningful ways to integrate
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match. However, we find that the attributes are compatible and can be
consolidated. This is shown in Figure 4.6a, which presents a revised
schema, schema 2.1. In schema 2.1 Keyword has been replaced by Topic-
area. 

Next we look for structural conflicts between schemas. A type con-
flict is found to exist between the entity Department in schema 1 and
the attribute “dept-name” in schema 2.1. The conflict is resolved by
keeping the stronger entity type, Department, and moving the attribute
type “dept-name” under Publication in schema 2 to the new entity,
Department, in schema 2.2 (see Figure 4.6b). 

Figure 4.6 View integration: type conflict
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At this point we have sufficient commonality between schemas to
attempt a merge. In schemas 1 and 2.2 we have two sets of common
entities, Department and Topic-area. Other entities do not overlap and
must appear intact in the superimposed, or merged, schema. The merged
schema, schema 3, is shown in Figure 4.7a. Because the common entities
are truly equivalent, there are no bad side effects of the merge due to
existing relationships involving those entities in one schema and not in
the other. (Such a relationship that remains intact exists in schema 1
between Topic-area and Report, for example.) If true equivalence cannot
be established, the merge may not be possible in the existing form. 

In Figure 4.7, there is some redundancy between Publication and
Report in terms of the relationships with Department and Topic-area.
Such a redundancy can be eliminated if there is a supertype/subtype
relationship between Publication and Report, which does in fact occur
in this case because Publication is a generalization of Report. In schema
4.1 (Figure 4.7b) we see the introduction of this generalization from
Report to Publication. Then in schema 4.2 (Figure 4.7c) we see that the

Figure 4.7 View integration: the merged schema
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(b) Schema 3.1, new generalization

(c) Schema 3.2, elimination of redundant relationships

Figure 4.7 (continued)
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redundant relationships between Report and Department and Topic-area
have been dropped. The attribute “title” has been eliminated as an
attribute of Report in Figure 4.7c because “title” already appears as an
attribute of Publication at a higher level of abstraction; “title” is inher-
ited by the subtype Report. 

The final schema, in Figure 4.7c, expresses completeness because all
the original concepts (report, publication, topic area, department, and
contractor) are kept intact. It expresses minimality because of the
transformation of “dept-name” from attribute in schema 1 to entity
and attribute in schema 2.2, and the merger between schema 1 and
schema 2.2 to form schema 3, and because of the elimination of “title”
as an attribute of Report and of Report relationships with Topic-area
and Department. Finally, it expresses understandability in that the
final schema actually has more meaning than the individual original
schemas. 

The view integration process is one of continual refinement and
reevaluation. It should also be noted that minimality may not always be
the most efficient way to proceed. If, for example, the elimination of the
redundant relationships “publishes” and/or “contains” from schema 3.1
to 3.2 causes the time required to perform certain queries to be exces-
sively long, it may be better from a performance viewpoint to leave
them in. This decision could be made during the analysis of the transac-
tions on the database or during the testing phase of the fully imple-
mented database.

4.5 Entity Clustering for ER Models 

This section presents the concept of entity clustering, which abstracts
the ER schema to such a degree that the entire schema can appear on a
single sheet of paper or a single computer screen. This has happy conse-
quences for the end user and database designer in terms of developing a
mutual understanding of the database contents and formally document-
ing the conceptual model. 

An entity cluster is the result of a grouping operation on a collection
of entities and relationships. Entity clustering is potentially useful for
designing large databases. When the scale of a database or information
structure is large and includes a large number of interconnections
among its different components, it may be very difficult to understand
the semantics of such a structure and to manage it, especially for the end
users or managers. In an ER diagram with 1,000 entities, the overall
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structure will probably not be very clear, even to a well-trained database
analyst. Clustering is therefore important because it provides a method
to organize a conceptual database schema into layers of abstraction, and
it supports the different views of a variety of end users. 

4.5.1 Clustering Concepts 

One should think of grouping as an operation that combines entities
and their relationships to form a higher-level construct. The result of a
grouping operation on simple entities is called an entity cluster. A group-
ing operation on entity clusters, or on combinations of elementary enti-
ties and entity clusters, results in a higher-level entity cluster. The high-
est-level entity cluster, representing the entire database conceptual
schema, is called the root entity cluster. 

Figure 4.8a illustrates the concept of entity clustering in a simple
case where (elementary) entities R-sec (report section), R-abbr (report
abbreviation), and Author are naturally bound to (dominated by) the
entity Report; and entities Department, Contractor, and Project are not
dominated. (Note that to avoid unnecessary detail, we do not include
the attributes of entities in the diagrams.) In Figure 4.8b, the dark-bor-
dered box around the entity Report and the entities it dominates defines
the entity cluster Report. The dark-bordered box is called the EC box to
represent the idea of an entity cluster. In general, the name of the entity
cluster need not be the same as the name of any internal entity; how-
ever, when there is a single dominant entity, the names are often the
same. The EC box number in the lower-right corner is a clustering-level
number used to keep track of the sequence in which clustering is done.
The number 2.1 signifies that the entity cluster Report is the first entity
cluster at level 2. Note that all the original entities are considered to be
at level 1. 

The higher-level abstraction, the entity cluster, must maintain the
same relationships between entities inside and outside the entity cluster
as occur between the same entities in the lower-level diagram. Thus, the
entity names inside the entity cluster should appear just outside the EC
box along the path of their direct relationship to the appropriately
related entities outside the box, maintaining consistent interfaces (rela-
tionships) as shown in Figure 4.8b. For simplicity, we modify this rule
slightly: If the relationship is between an external entity and the domi-
nant internal entity (for which the entity cluster is named), the entity
cluster name need not be repeated outside the EC box. Thus, in Figure
4.8b, we could drop the name Report both places it occurs outside the
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Report box, but we must retain the name Author, which is not the name
of the entity cluster. 

4.5.2 Grouping Operations 

Grouping operations are the fundamental components of the entity
clustering technique. They define what collections of entities and rela-
tionships comprise higher-level objects, the entity clusters. The opera-
tions are heuristic in nature and include (see Figure 4.9): 

Figure 4.8 Entity clustering concepts
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• Dominance grouping 

• Abstraction grouping 

• Constraint grouping 

• Relationship grouping 

These grouping operations can be applied recursively or used in a
variety of combinations to produce higher-level entity clusters, that is,
clusters at any level of abstraction. An entity or entity cluster may be an

Figure 4.9 Grouping operations

(a) Dominance grouping (b) Abstraction grouping

(c) Constraint grouping (d) Relationship grouping
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object that is subject to combinations with other objects to form the
next higher level. That is, entity clusters have the properties of entities
and can have relationships with any other objects at any equal or lower
level. The original relationships among entities are preserved after all
grouping operations, as illustrated in Figure 4.8. 

Dominant objects or entities normally become obvious from the ER
diagram or the relationship definitions. Each dominant object is
grouped with all its related nondominant objects to form a cluster. Weak
entities can be attached to an entity to make a cluster. Multilevel data
objects using abstractions such as generalization and aggregation can be
grouped into an entity cluster. The supertype or aggregate entity name is
used as the entity cluster name. Constraint-related objects that extend
the ER model to incorporate integrity constraints, such as the exclusive-
OR can be grouped into an entity cluster. Additionally, ternary or higher
degree relationships potentially can be grouped into an entity cluster.
The cluster represents the relationship as a whole. 

4.5.3 Clustering Technique 

The grouping operations and their order of precedence determine the
individual activities needed for clustering. We can now learn how to
build a root entity cluster from the elementary entities and relationships
defined in the ER modeling process. This technique assumes that a top-
down analysis has been performed as part of the database requirement
analysis and that the analysis has been documented so that the major
functional areas and subareas are identified. Functional areas are often
defined by an enterprise’s important organizational units, business activ-
ities, or, possibly, by dominant applications for processing information.
As an example, recall Figure 4.3 (reconstructed in Figure 4.10), which
can be thought of as having three major functional areas: company
organization (division, department), project management (project, skill,
location, employee), and employee data (employee, manager, secretary,
engineer, technician, prof-assoc, and desktop). Note that the functional
areas are allowed to overlap. Figure 4.10 uses an ER diagram resulting
from the database requirement analysis to show how clustering involves
a series of bottom-up steps using the basic grouping operations. The fol-
lowing list explains these steps. 

1. Define points of grouping within functional areas. Locate the domi-
nant entities in a functional area through natural relationships,
local n-ary relationships, integrity constraints, abstractions, or
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Figure 4.10 ER diagram: clustering technique
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just the central focus of many simple relationships. If such points
of grouping do not exist within an area, consider a functional
grouping of a whole area. 

2. Form entity clusters. Use the basic grouping operations on elemen-
tary entities and their relationships to form higher-level objects,
or entity clusters. Because entities may belong to several potential
clusters, we need to have a set of priorities for forming entity clus-
ters. The following set of rules, listed in priority order, defines the
set that is most likely to preserve the clarity of the conceptual
model:

a. Entities to be grouped into an entity cluster should exist
within the same functional area; that is, the entire entity clus-
ter should occur within the boundary of a functional area. For
example, in Figure 4.10, the relationship between Department
and Employee should not be clustered unless Employee is
included in the company organization functional area with
Department and Division. In another example, the relation-
ship between the supertype Employee and its subtypes could
be clustered within the employee data functional area. 

b. If a conflict in choice between two or more potential entity
clusters cannot be resolved (e.g., between two constraint
groupings at the same level of precedence), leave these entity
clusters ungrouped within their functional area. If that func-
tional area remains cluttered with unresolved choices, define
functional subareas in which to group unresolved entities,
entity clusters, and their relationships. 

3. Form higher-level entity clusters. Apply the grouping operations
recursively to any combination of elementary entities and entity
clusters to form new levels of entity clusters (higher-level objects).
Resolve conflicts using the same set of priority rules given in step
2. Continue the grouping operations until all the entity represen-
tations fit on a single page without undue complexity. The root
entity cluster is then defined. 

4. Validate the cluster diagram. Check for consistency of the interfaces
(relationships) between objects at each level of the diagram. Ver-
ify the meaning of each level with the end users.

The result of one round of clustering is shown in Figure 4.11, where
each of the clusters is shown at level 2. 
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4.6 Summary 

Conceptual data modeling, using either the ER or UML approach, is par-
ticularly useful in the early steps of the database life cycle, which involve
requirements analysis and logical design. These two steps are often done
simultaneously, particularly when requirements are determined from
interviews with end users and modeled in terms of data-to-data relation-

Figure 4.11 Clustering results
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ships and process-to-data relationships. The conceptual data modeling
step (ER approach) involves the classification of entities and attributes
first, then the identification of generalization hierarchies and other
abstractions, and finally the definition of all relationships among enti-
ties. Relationships may be binary (the most common), ternary, and
higher-level n-ary. Data modeling of individual requirements typically
involves creating a different view for each end user’s requirements. Then
the designer must integrate those views into a global schema, so that the
entire database is pictured as an integrated whole. This helps to elimi-
nate needless redundancy—such elimination is particularly important in
logical design. Controlled redundancy can be created later, at the physi-
cal design level, to enhance database performance. Finally, an entity
cluster is a grouping of entities and their corresponding relationships
into a higher-level abstract object. Clustering promotes the simplicity
that is vital for fast end-user comprehension. In the next chapter we take
the global schema produced from the conceptual data modeling and
view integration steps, and we transform it into SQL tables. The SQL for-
mat is the end product of logical design, which is still independent of
any particular database management system. 

4.7 Literature Summary 

Conceptual data modeling is defined in Tsichritzis and Lochovsky
[1982], Brodie, Mylopoulos, and Schmidt [1984], Nijssen and Halpin
[1989], Batini, Ceri, and Navathe [1992]. Discussion of the requirements
data collection process can be found in Martin [1982], Teorey and Fry
[1982], and Yao [1985]. View integration has progressed from a represen-
tation tool [Smith and Smith, 1977] to heuristic algorithms [Batini, Len-
zerini, and Navathe, 1986; Elmasri and Navathe, 2003]. These algo-
rithms are typically interactive, allowing the database designer to make
decisions based on suggested alternative integration actions. A variety of
entity clustering models have been defined that provide a useful founda-
tion for the clustering technique shown here [Feldman and Miller, 1986;
Dittrich, Gotthard, and Lockemann, 1986; Teorey et al., 1989]. 
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5Transforming the Conceptual 
Data Model to SQL 

his chapter focuses on the database life cycle step that is of particular
interest when designing relational databases: transformation of the

conceptual data model to candidate tables and their definition in SQL
[step II(c)]. There is a natural evolution from the ER and UML data mod-
els to a relational schema. The evolution is so natural, in fact, that it sup-
ports the contention that conceptual data modeling is an effective early
step in relational database development. This contention has been
proven to some extent by the widespread commercialization and use of
software design tools that support not only conceptual data modeling
but also the automatic conversion of these models to vendor-specific
SQL table definitions and integrity constraints. 

In this chapter we assume the applications to be Online Transaction
Processing (OLTP). Note that Online Analytical Processing (OLAP) appli-
cations are the subject of Chapter 8.

5.1 Transformation Rules and SQL Constructs 

Let’s first look at the ER and UML modeling constructs in detail to see
how the rules about transforming the conceptual data model to SQL
tables are defined and applied. Our example is drawn from the company
personnel and project conceptual schemas illustrated in Figure 4.3 (see
Chapter 4). 

T
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The basic transformations can be described in terms of the three
types of tables they produce:

• SQL table with the same information content as the original entity
from which it is derived. This transformation always occurs for enti-
ties with binary relationships (associations) that are many-to-
many, one-to-many on the “one” (parent) side, or one-to-one on
either side; entities with binary recursive relationships that are
many-to-many; and entities with any ternary or higher-degree
relationship or a generalization hierarchy. 

• SQL table with the embedded foreign key of the parent entity. This
transformation always occurs for entities with binary relation-
ships that are one-to-many for the entity on the “many” (child)
side, for one-to-one relationships for one of the entities, and for
each entity with a binary recursive relationship that is one-to-one
or one-to-many. This is one of the two most common ways design
tools handle relationships, by prompting the user to define a for-
eign key in the child table that matches a primary key in the par-
ent table.

• SQL table derived from a relationship, containing the foreign keys of all
the entities in the relationship. This transformation always occurs
for relationships that are binary and many-to-many, relationships
that are binary recursive and many-to-many, and all relationships
that are of ternary or higher degree. This is the other most com-
mon way design tools handle relationships in the ER and UML
models. A many-to-many relationship can only be defined in
terms of a table that contains foreign keys that match the primary
keys of the two associated entities. This new table may also con-
tain attributes of the original relationship—for example, a rela-
tionship “enrolled-in” between two entities Student and Course
might have the attributes “term” and “grade,” which are associ-
ated with a particular enrollment of a student in a particular
course. 

The following rules apply to handling SQL null values in these trans-
formations: 

• Nulls are allowed in an SQL table for foreign keys of associated
(referenced) optional entities. 

• Nulls are not allowed in an SQL table for foreign keys of associ-
ated (referenced) mandatory entities. 

Teorey.book  Page 84  Saturday, July 16, 2005  12:57 PM



5.1 Transformation Rules and SQL Constructs 85

• Nulls are not allowed for any key in an SQL table derived from a
many-to-many relationship, because only complete row entries
are meaningful in the table. 

Figures 5.1 through 5.8 show the SQL create table statements that
can be derived from each type of ER or UML model construct. Note that
table names are shown in boldface for readability. Note also that in each
SQL table definition, the term “primary key” represents the key of the
table that is to be used for indexing and searching for data.

5.1.1 Binary Relationships 

A one-to-one binary relationship between two entities is illustrated in
Figure 5.1, parts a through c. Note that the UML equivalent binary asso-
ciation is given in Figure 5.2, parts a through c. 

When both entities are mandatory (Figure 5.1a), each entity
becomes a table, and the key of either entity can appear in the other
entity’s table as a foreign key. One of the entities in an optional relation-
ship (see Department in Figure 5.1b) should contain the foreign key of
the other entity in its transformed table. Employee, the other entity in
Figure 5.1b, could also contain a foreign key (dept_no) with nulls
allowed, but this would require more storage space because of the much
greater number of Employee entity instances than Department
instances. When both entities are optional (Figure 5.1c), either entity
can contain the embedded foreign key of the other entity, with nulls
allowed in the foreign keys. 

The one-to-many relationship can be shown as either mandatory or
optional on the “many” side, without affecting the transformation. On
the “one” side it may be either mandatory (Figure 5.1d) or optional (Fig-
ure 5.1e). In all cases the foreign key must appear on the “many” side,
which represents the child entity, with nulls allowed for foreign keys
only in the optional “one” case. Foreign key constraints are set accord-
ing to the specific meaning of the relationship and may vary from one
relationship to another. 

The many-to-many relationship, shown in Figure 5.1f as optional for
both entities, requires a new table containing the primary keys of both
entities. The same transformation applies to either the optional or manda-
tory case, including the fact that the not null clause must appear for the
foreign keys in both cases. Note also that an optional entity means that
the SQL table derived from it may have zero rows for that particular rela-
tionship. This does not affect “null” or “not null” in the table definition.
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Figure 5.1 ER model: one-to-one binary relationship between two entities

(b) One-to-one, one entity optional, one mandatory

(a) One-to-one, both entities mandatory

(c) One-to-one, both entities optional
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 emp_id char(10),
 primary key (desktop_no),
 foreign key (emp_id) references

 on delete set null on update cascade);

desktop

engineer
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Figure 5.1 (continued)

(f)  Many-to-many, both
     entities optional

(e) One-to-many, one entity optional, one mandatory

(d) One-to-many, both entities mandatory

Prof-assoc

Report

publishes

belongs-to

Department

Employee

Department

1

N

has

N

N

1

N

Every employee works in exactly one department, and
each department has at least one employee.

Each department publishes one or more reports. A given
report may not necessarily be published by a department.

Every professional association could have none, one, or
many engineer members. Each engineer could be a member
of none, one, or many professional associations.

create table
(dept_no integer,
 dept_name char(20),
 primary key (dept_no));

department

create table
(emp_id char(10),
 emp_name char(20),
 dept_no integer not null,
 primary key (emp_id),
 foreign key (dept_no) references

 on delete set default on update cascade);

employee

department

create table
(dept_no integer,
 dept_name char(20),
 primary key (dept_no));

department

create table
(report_no integer,
 dept_no integer,
 primary key (report_no),
 foreign key (dept_no) references department

 on delete set null on update cascade);

report

Engineer

create table
(emp_id char(10),
 primary key (emp_id));

engineer

create table
(assoc_name varchar(256),
 primary key (assoc_name));

prof_assoc

create table
(emp_id char(10),
 assoc_name varchar(256),
 primary key (emp_id, assoc_name),
 foreign key (emp_id) references

 on delete cascade on update cascade,
 foreign key (assoc_name) references

 on delete cascade on update cascade);

belongs_to

engineer

prof_assoc
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Figure 5.2 UML: one-to-one binary relationship between two entities

Report

Abbreviation

(a) one-to-one, both entities mandatory

1

1

has-abbr

Every report has one abbreviation, and every
abbreviation represents exactly one report.

create table abbreviation
          (abbr_no char(6),
           report_no integer not null unique,
           primary key (abbr_no),
           foreign key (report_no) references report

on delete cascade on update cascade);

create table report
          (report_no integer,
           report_name varchar(256),
           primary key(report_no));

Engineer

Desktop

(c) one-to-one, both entities optional

has-
allocated

Some desktop computers are allocated to engineers,
but not necessarily to all engineers.

create table desktop
          (desktop_no integer,
           emp_id char(10),
           primary key (desktop_no),
           foreign key (emp_id) references engineer

on delete set null on update cascade);

create table engineer
          (emp_id char(10),
           desktop_no integer,
           primary key (emp_id));

Department

Employee

(b) one-to-one, one entity optional, one mandatory

0..1

1

managed-by

Every department must have a manager, but an
employee can be a manager of at most one department.

create table employee
          (emp_id char(10),
           emp_name char(20),
           primary key (emp_id));

create table department
          (dept_no integer,
           dept_name char(20),
           mgr_id char(10) not null unique,
           primary key (dept_no),
           foreign key (mgr_id) references employee

on delete set default on update cascade);

0..1

0..1
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Figure 5.2 (continued)

Department

Employee

(d) one-to-many, both entities mandatory

1

*

Every employee works in exactly one department,
and each department has at least one employee.

create table employee

create table department
          (dept_no integer,
           dept_name char(20),
           primary key (dept_no));

Engineer

Prof-assoc

(f) many-to-many, both entities optional

Department

Report

(e) one-to-many, one entity optional, one mandatory

0..1

*

Each department publishes one or more reports. A given
report may not necessarily be published by a department.

create table report
          (report_no integer,
           dept_no integer,
           primary key (report_no),
           foreign key (dept_no) references department
                on delete set null on update cascade);

create table department
          (dept_no integer,
           dept_name char(20),
           primary key (dept_no));

0..1

0..1

Every professional association could have none, one, or
many engineer members. Each engineer could be a member
of none, one, or many professional associations.

create table engineer
          (emp_id char(10),
           primary key (emp_id));

create table prof_assoc
          (assoc_name varchar(256),
           primary key (assoc_name));

create table belongs_to
          (emp_id char(10),
           assoc_name varchar(256),
           primary key (emp_id, assoc_name),
           foreign key (emp_id) references engineer
                on delete cascade on update cascade,
           foreign key (assoc_name) references prof_assoc
                on delete cascade on update cascade);

(emp_id char(10),
 emp_name char (20),
 dept_no integer not null,
 primary key (emp_id),
 foreign key (dept_no) references department
     on delete set default on update cascade);
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5.1.2 Binary Recursive Relationships 

A single entity with a one-to-one relationship implies some form of
entity occurrence pairing, as indicated by the relationship name. This
pairing may be completely optional, completely mandatory, or neither.
In all of these cases (Figure 5.3a for ER and Figure 5.4a for UML), the

Figure 5.3 ER model: binary recursive relationship

Employee

1 1

is-
married-to

(a) One-to-one, both sides optional

Employee

N N

is-
coauthor-

with

(c) Many-to-many, both sides optional

(b) One-to-many, one side mandatory, many side optional

Engineer

1 N

is-
group-leader

-of

Any employee is allowed to be married to another
employee in this company.

Engineers are divided into groups for certain projects.
Each group has a leader.

Each employee has the opportunity to coauthor
a report with one or more other employees, or to
write the report alone.

create table
(emp_id char(10),
 emp_name char(20),
 spouse_id char(10),
 primary key (emp_id),
 foreign key (spouse_id) references

 on delete set null on update cascade);

employee

employee

create table
(emp_id char(10),
 leader_id char(10) not null,
 primary key (emp_id),
 foreign key (leader_id) references

 on delete set default on update cascade);

engineer

engineer

create table
(emp_id char(10),
 emp_name char(20),
 primary key (emp_id));

employee

create table
(author_id char(10),
 coauthor_id char(10),
 primary key (author_id, coauthor_id),
 foreign key (author_id) references

 on delete cascade on update cascade,
 foreign key (coauthor_id) reference

 on delete cascade on update cascade);

coauthor

employee

employee
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pairing entity key appears as a foreign key in the resulting table. The two
key attributes are taken from the same domain but are given different
names to designate their unique use. The one-to-many relationship
requires a foreign key in the resulting table (Figure 5.3b). The foreign key
constraints can vary with the particular relationship.

Figure 5.4 UML: binary recursive relationship

(a) one-to-one, both sides optional

Any employee is allowed to be married
to another employee in this company.

create table employee
          (emp_id char(10),
           emp_name char(20),
           spouse_id char(10),
           primary key (emp_id),
           foreign key (spouse_id) references employee
                on delete set null on update cascade);

Employee

0..1

0..1

is-married-to

(b) one-to-many, one side mandatory, many side optional

Engineers are divided into groups for certain
projects. Each group has a leader.

create table engineer
          (emp_id char(10),
           leader_id char(10) not null,
           primary key (emp_id),
           foreign key (leader_id) references engineer
                on delete set default on update cascade);

Engineer

1

0..*

is-group-leader-of

is-led-by

(c) many-to-many, both sides optional

Each employee has the opportunity to coauthor a
report with one or more other employees, or to
write the report alone.

create table employee
          (emp_id char(10),
           emp_name char(20),
           primary key (emp_id));

create table coauthor
          (author_id char(10),
           coauthor_id char(10),
           primary key (author_id, coauthor_id),
           foreign key (author_id) references employee
                on delete cascade on update cascade,
           foreign key (coauthor_id) references employee
                on delete cascade on update cascade);

Employee

0..*

0..*

is-coauthor-with
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The many-to-many relationship is shown as optional (Figure 5.3c)
and results in a new table; it could also be defined as mandatory (using
the word “must” instead of “may”); both cases have the foreign keys
defined as “not null.” In many-to-many relationships, foreign key con-
straints on delete and update must always be cascade, because each
entry in the SQL table depends on the current value or existence of the
referenced primary key. 

5.1.3 Ternary and n-ary Relationships

An n-ary relationship has (n + 1) possible variations of connectivity: all n
sides with connectivity “one;” (n – 1) sides with connectivity “one,” and
one side with connectivity “many;” (n – 2) sides with connectivity “one”
and two sides with “many;” and so on until all sides are “many.” 

The four possible varieties of a ternary relationship are shown in Fig-
ure 5.5 for the ER model and Figure 5.6 for UML. All variations are trans-
formed by creating an SQL table containing the primary keys of all enti-
ties; however, in each case the meaning of the keys is different. When all
three relationships are “one” (Figure 5.5a), the resulting SQL table con-
sists of three possible distinct keys. This arrangement represents the fact
that three FDs are needed to describe this relationship. The optionality
constraint is not used here because all n entities must participate in
every instance of the relationship to satisfy the FD constraints. (See
Chapter 6 for more discussion of functional dependencies.) 

In general the number of entities with connectivity “one” deter-
mines the lower bound on the number of FDs. Thus, in Figure 5.3b,
which is one-to-one-to-many, there are two FDs; in Figure 5.5c, which is
one-to-many-to-many, there is only one FD. When all relationships are
“many” (Figure 5.5d), the relationship table is all one composite key,
unless the relationship has its own attributes. In that case the key is the
composite of all three keys from the three associated entities. 

Foreign key constraints on delete and update for ternary relation-
ships transformed to SQL tables must always be cascade, because each
entry in the SQL table depends on the current value of, or existence of,
the referenced primary key.  
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Figure 5.5 ER model: ternary and n-ary relationships

Technician

NotebookProject

1

1 1uses-
notebook

Functional dependencies

uses_notebook

emp_id project_name notebook_no

35

35

42

42

81

93

93

alpha

gamma

delta

epsilon

gamma

alpha

beta

5001

2008

1004

3005

1007

1009

5001

A technician uses exactly
one notebook for each project.
Each notebook belongs to one
technician for each project. Note
that a technician may still work
on many projects and maintain
different notebooks for different
projects.

create table (emp_id char(10),technician

create table (project_name char(20),project

create table (notebook_no integer,notebook

create table (emp_id char(10),uses_notebook

 primary key (emp_id));

 primary key (project_name));

 primary key (notebook_no));

 project_name char(20),
 notebook_no integer not null,
 primary key (emp_id, project_name),
 foreign key (emp_id) references

 on delete cascade on update cascade,
 foreign key (project_name) references

 on delete cascade on update cascade,
 foreign key (notebook_no) references

 on delete cascade on update cascade,
 unique (emp_id, notebook_no),
 unique (project_name, notebook_no));

technician

project

notebook

(a) One-to-one-to-one ternary relationship

emp_id, project_name notebook_no
emp_id, notebook_no project_name
project_name, notebook_no emp_id

→
→

→
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Figure 5.5 (continued)

Employee

LocationProject

N

1 1assigned-
to

Functional dependencies

assigned_to

emp_id project_name loc_name

48101

48101

20702

20702

51266

51266

76323

forest

ocean

ocean

river

river

ocean

hills

B66

E71

A12

D54

G14

A12

B66

Each employee assigned to a
project works at only one location
for that project, but can be at a
different location for a different
project. At a given location, an
employee works on only one
project. At a particular location,
there can be many employees
assigned to a given project.

create table (emp_id char(10),employee

create table (project_name char(20),project

create table (loc_name char(15),location

create table (emp_id char(10),assigned_to

 primary key (emp_id));
 emp_name char(20),

 primary key (project_name));

 primary key (loc_name));

 project_name char(20),
 loc_name char(15) not null,
 primary key (emp_id, project_name), 
 foreign key (emp_id) references

 on delete cascade on update cascade,
 foreign key (project_name) references

 on delete cascade on update cascade,
 foreign key (loc_name) references

 on delete cascade on update cascade,
 unique (emp_id, loc_name));

employee

project

location

(b) One-to-one-to-many ternary relationships

emp_id, loc_name project_name
emp_id, project_name loc_name

→
→

Teorey.book  Page 94  Saturday, July 16, 2005  12:57 PM



@Spy

5.1 Transformation Rules and SQL Constructs 95

Figure 5.5 (continued)

Project

EngineerManager

N

1 N
assigned-to

Functional dependency

manages

emp_idproject_name mgr_id

4106

4200

7033

4200

4106

7033

4106

4106

alpha

alpha

beta

beta

gamma

delta

delta

iota

27

27

32

14

71

55

39

27

Each engineer working on a
particular project has exactly one
manager, but a project can have
many managers and an engineer
may have many managers and
many projects. A manager may
manage several projects.

create table (project_name char(20),project

create table (mgr_id char(10),manager

create table (emp_id char(10),engineer

create table (project_name char(20),manages

 primary key (project_name));

 primary key (mgr_id));

 primary key (emp_id));

 mgr_id char(10) not null,
 emp_id char(10),
 primary key (project_name, emp_id),
 foreign key (project_name) references

 on delete cascade on update cascade,
 foreign key (mgr_id) references

 on delete cascade on update cascade,
 foreign key (emp_id) references

 on delete cascade on update cascade);

project

manager

engineer

(c) One-to-many-to-many ternary relationships

project_name, emp_id mgr_id→
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Figure 5.5 (continued)

Employee

ProjectSkill

N

N N
skill-used

Functional dependencies

skill_used

emp_id project_nameskill_type

101

101

101

101

102

102

102

105

electronics

electronics

algebra

calculus

mechanics

mechanics

algebra

geometry

electronics

electronics

algebra

set theory

mechanics

mechanics

geometry

topology

Employees can use different skills
on any one of many projects, and
each project has many employees
with various skills.

create table (emp_id char(10),employee

create table (skill_type char(15),skill

create table (project_name char(20),project

create table (emp_id char(10),skill_used

 primary key (emp_id));
 emp_name char(20),

 primary key (skill_type));

 primary key (project_name));

 skill_type char(15),
 project_name char(20),
 primary key (emp_id, skill_type, project_name),
 foreign key (emp_id) references

 on delete cascade on update cascade,
 foreign key (skill_type) references

 on delete cascade on update cascade,
 foreign key (project_name) references

 on delete cascade on update cascade);

None

employee

skill

project

(d) Many-to-many-to-many ternary relationships
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Figure 5.6 UML: ternary and n-ary relationships

Technician

Project

emp_id project_name notebook_no

35 alpha 5001

35 gamma 2008

42 delta 1004

42 epsilon 3005

81 gamma 1007

93 alpha 1009

93 beta 5001

Notebook1 1

1

uses-notebook

A technician uses exactly one notebook 
for each project. Each notebook belongs 
to one technician for each project. Note 
that a technician may still work on many 
projects and maintain different note-
books for different projects.

create table technician (emp_id char(10),
       primary key (emp_id));

create table project (project_name char(20),
             primary key (project_name));

create table notebook (notebook_no integer,
      primary key (notebook_no));

create table uses_notebook (emp_id char(10),
               project_name char(20),
               notebook_no integer not null,
               primary key (emp_id, project_name),
               foreign key (emp_id) references technician
                    on delete cascade on update cascade,
               foreign key (project_name) references project
                    on delete cascade on update cascade,
               foreign key (notebook_no) references notebook
                    on delete cascade on update cascade,
               unique (emp_id, notebook_no),
               unique (project_name, notebook_no));

uses_notebook

emp_id, project_name → notebook_no
emp_id, notebook_no → project_name
project_name, notebook_no → emp_id

(a) one-to-one-to-one ternary association

Functional dependencies
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Figure 5.6 (continued)

emp_id project_name loc_name

48101 forest B66

48101 ocean E71

20702 ocean A12

20702 river D54

51266 river G14

51266 ocean A12

76323 hills B66

Each employee assigned to a project works 
at only one location for that project, but 
can be at a different location for a different 
project. At a given location, an employee 
works on only one project. At a particular 
location there can be many employees 
assigned to a given project.

create table employee (emp_id char(10),
     emp_name char(20),
     primary key (emp_id));

create table project (project_name char(20),
             primary key (project_name));

create table location (loc_name char(15),
               primary key (loc_name));

create table assigned_to (emp_id char(10),
          project_name char(20),
          loc_name char(15) not null,
          primary key (emp_id, project_name),
          foreign key (emp_id) references employee
               on delete cascade on update cascade,
          foreign key (project_name) references project
               on delete cascade on update cascade,
          foreign key (loc_name) references location
               on delete cascade on update cascade,
          unique (emp_id, loc_name));

assigned_to

(b) one-to-one-to-many ternary associations

emp_id, loc_name → project_name
emp_id, project_name → loc_name

Functional dependencies

Employee

Project Location1 1

*

assigned-to
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Figure 5.6 (continued)

emp_idproject_name mgr_id

4106alpha 27

4200alpha 27

7033beta 32

4200beta 14

4106gamma 71

7033delta 55

4106delta 39

4106iota 27

Each engineer working on a particular 
project has exactly one manager, but  
a project can have many managers and 
an engineer may have many managers 
and many projects. A manager may 
manage several projects.

create table project (project_name char(20),
             primary key (project_name));

(c) one-to-many-to-many ternary association

create table manager (mgr_id char(10),
                primary key (mgr_id));

create table engineer (emp_id char(10),
               primary key (emp_id));

create table manages (project_name char(20),
     mgr_id char(10) not null,
     emp_id char(10),
     primary key (project_name, emp_id),
     foreign key (project_name) references project
          on delete cascade on update cascade,
     foreign key (mgr_id) references manager
          on delete cascade on update cascade,
     foreign key (emp_id) references engineer
          on delete cascade on update cascade);

manages

project_name, emp_id → mgr_id

Functional dependency

Project

Manager Engineer1 *

*

manages
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Figure 5.6 (continued)

emp_id project_nameskill_type

101 electronicsalgebra

101 electronicscalculus

101 mechanicsalgebra

101 mechanicsgeometry

102 electronicsalgebra

102 electronicsset-theory

102 mechanicsgeometry

105 mechanicstopology

Employees can use different skills 
on any one of many projects, and 
each project has many employees 
with various skills.

create table employee (emp_id char(10),
     emp_name char(20),
     primary key (emp_id));

create table skill (skill_type char(15),
        primary key (skill_type));

create table project (project_name char(20),
             primary key (project_name));

create table skill_used (emp_id char(10),
       skill_type char(15),
       project_name char(20),
       primary key (emp_id, skill_type, project_name),
       foreign key (emp_id) references employee
            on delete cascade on update cascade,
       foreign key (skill_type) references skill
            on delete cascade on update cascade,
       foreign key (project_name) references project
            on delete cascade on update cascade);

skill_used

(d) many-to-many-to-many ternary association

None

Functional dependencies

Employee

Skill Project* *

*

skill-used
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5.1.4 Generalization and Aggregation 

The transformation of a generalization abstraction can produce separate
SQL tables for the generic or supertype entity and each of the subtypes
(Figure 5.7 for the ER model and Figure 5.8 for UML). The table derived
from the supertype entity contains the supertype entity key and all com-
mon attributes. Each table derived from subtype entities contains the
supertype entity key and only the attributes that are specific to that sub-
type. Update integrity is maintained by requiring all insertions and dele-
tions to occur in both the supertype table and relevant subtype table—
that is, the foreign key constraint cascade must be used. If the update is
to the primary key of the supertype table, then all subtype tables, as well
as the supertype table, must be updated. An update to a nonkey attribute
affects either the supertype or one subtype table, but not both. The

Figure 5.7 ER model: generalization and aggregation

create table (indiv_id char(10),individual
 indiv_name char(20),
 indiv_addr char(20),
 primary key (indiv_id));

create table (emp_id char(10),employee
 job_title char(15),
 primary key (emp_id),
 foreign key (emp_id) references individual

 on delete cascade on update cascade);

create table (cust_no char(10),customer
 cust_credit char(12),
 primary key (cust_no),
 foreign key (cust_no) references individual

 on delete cascade on update cascade);

Individual An individual may be either an
employee or a customer, or both, 
or neither.

Employee Customer
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transformation rules (and integrity rules) are the same for both the dis-
joint and overlapping subtype generalizations.  

Another approach is to have a single table that includes all attributes
from the supertype and subtypes (the whole hierarchy in one table),
with nulls used when necessary. A third possibility is one table for each
subtype, pushing down the common attributes into the specific sub-
types. There are advantages and disadvantages to each of these three
approaches. Several software tools now support all three options [Fowler
2003; Ambler, 2003].

Database practitioners often add a discriminator to the supertype
when they implement generalization. The discriminator is an attribute
that has a separate value for each subtype and indicates which subtype
to use to get further information. This approach works, up to a point.
However, there are situations requiring multiple levels of supertypes and
subtypes, where more than one discriminator may be required.

The transformation of an aggregation abstraction also produces a
separate table for the supertype entity and each subtype entity. However,

Figure 5.8 UML: generalization and aggregation

Individual

Employee Customer

create table individual (indiv_id char(10),
       indiv_name char(20),
       indiv_addr char(20),
       primary key (indiv_id));

create table employee (emp_id char(10),
     job_title char(15),
     primary key (emp_id),
     foreign key (emp_id) references individual
          on delete cascade on update cascade);

create table customer (cust_no char(10),
     cust_credit char(12),
     primary key (cust_no),
     foreign key (cust_no) references individual
          on delete cascade on update cascade);

An individual may
be either an employee
or a customer, or both,
or neither.
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there are no common attributes and no integrity constraints to main-
tain. The main function of aggregation is to provide an abstraction to
aid the view integration process. In UML, aggregation is a composition
relationship, not a type relationship, which corresponds to a weak entity
[Muller, 1999].

5.1.5 Multiple Relationships 

Multiple relationships among n entities are always considered to be com-
pletely independent. One-to-one, one-to-many binary, or binary recur-
sive relationships resulting in tables that are either equivalent or differ
only in the addition of a foreign key can simply be merged into a single
table containing all the foreign keys. Many-to-many or ternary relation-
ships that result in SQL tables tend to be unique and cannot be merged. 

5.1.6 Weak Entities 

Weak entities differ from entities only in their need for keys from other
entities to establish their uniqueness. Otherwise, they have the same
transformation properties as entities, and no special rules are needed.
When a weak entity is already derived from two or more entities in the
ER diagram, it can be directly transformed into a table without further
change. 

5.2 Transformation Steps 

The following list summarizes the basic transformation steps from an ER
diagram to SQL tables:

• Transform each entity into a table containing the key and non-
key attributes of the entity

• Transform every many-to-many binary or binary recursive rela-
tionship into a table with the keys of the entities and the
attributes of the relationship

• Transform every ternary or higher-level n-ary relationship into a
table

Now let us study each step in turn. 
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5.2.1 Entity Transformation 

If there is a one-to-many relationship between two entities, add the key
of the entity on the “one” side (the parent) into the child table as a for-
eign key. If there is a one-to-one relationship between one entity and
another entity, add the key of one of the entities into the table for the
other entity, thus changing it to a foreign key. The addition of a foreign
key due to a one-to-one relationship can be made in either direction.
One strategy is to maintain the most natural parent-child relationship
by putting the parent key into the child table. Another strategy is based
on efficiency: add the foreign key to the table with fewer rows. 

Every entity in a generalization hierarchy is transformed into a table.
Each of these tables contains the key of the supertype entity; in reality,
the subtype primary keys are foreign keys as well. The supertype table
also contains nonkey values that are common to all the relevant entities;
the other tables contain nonkey values specific to each subtype entity. 

SQL constructs for these transformations may include constraints for
not null, unique, and foreign key. A primary key must be specified for
each table, either explicitly from among the keys in the ER diagram or
by taking the composite of all attributes as the default key. Note that the
primary key designation implies that the attribute is not null or unique.
It is important to note, however, that not all DBMSs follow the ANSI
standard in this regard—it may be possible in some systems to create a
primary key that can be null. We recommend that you specify “not null”
explicitly for all key attributes.

5.2.2 Many-to-Many Binary Relationship Transformation 

In this step, every many-to-many binary relationship is transformed into
a table containing the keys of the entities and the attributes of the rela-
tionship. The resulting table will show the correspondence between spe-
cific instances of one entity and those of another entity. Any attribute of
this correspondence, such as the elected office an engineer has in a pro-
fessional association (Figure 5.1f), is considered intersection data and is
added to the table as a nonkey attribute. 

SQL constructs for this transformation may include constraints for
not null. The unique constraint is not used here because all keys are
composites of the participating primary keys of the associated entities in
the relationship. The constraints for primary key and foreign key are
required, because a table is defined as containing a composite of the pri-
mary keys of the associated entities. 
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5.2.3 Ternary Relationship Transformation 

In this step, every ternary (or higher n-ary) relationship is transformed
into a table. Ternary or higher n-ary relationships are defined as a collec-
tion of the n primary keys in the associated entities in that relationship,
with possibly some nonkey attributes that are dependent on the key
formed by the composite of those n primary keys. 

SQL constructs for this transformation must include constraints for
not null, since optionality is not allowed. The unique constraint is not
used for individual attributes, because all keys are composites of the par-
ticipating primary keys of the associated entities in the relationship. The
constraints for primary key and foreign key are required because a table
is defined as a composite of the primary keys of the associated entities.
The unique clause must also be used to define alternate keys that often
occur with ternary relationships. Note that a table derived from an n-ary
relationship has n foreign keys. 

5.2.4 Example of ER-to-SQL Transformation 

ER diagrams for the company personnel and project database (Chapter
4) can be transformed to SQL tables. A summary of the transformation
of entities and relationships to SQL tables is illustrated in the following
list. 

SQL tables derived directly from entities (see Figure 4.3d): 

division secretary project 
department engineer location
employee technician prof_assoc
manager skill desktop 

SQL tables derived from many-to-many binary or many-to-many
binary recursive relationships: 

• belongs_to

SQL tables transformed from ternary relationships: 

• skill_used 

• assigned_to
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5.3 Summary 

Entities, attributes, and relationships in the ER model and classes,
attributes, and associations in UML can be transformed directly into SQL
(SQL-99) table definitions with some simple rules. Entities are trans-
formed into tables, with all attributes mapped one-to-one to table
attributes. Tables representing entities that are the child (“many” side) of
a parent-child (one-to-many or one-to-one) relationship must also
include, as a foreign key, the primary key of the parent entity. A many-
to-many relationship is transformed into a table that contains the pri-
mary keys of the associated entities as its composite primary key; the
components of that key are also designated as foreign keys in SQL. A ter-
nary or higher-level n-ary relationship is transformed into a table that
contains the primary keys of the associated entities; these keys are desig-
nated as foreign keys in SQL. A subset of those keys can be designated as
the primary key, depending on the functional dependencies associated
with the relationship. Rules for generalization require the inheritance of
the primary key from the supertype to the subtype entities when trans-
formed into SQL tables. Optionality constraints in the ER or UML dia-
grams translate into nulls allowed in the relational model when applied
to the “one” side of a relationship. In SQL, the lack of an optionality
constraint determines the not null designation in the create table defini-
tion. 

5.4 Literature Summary 

Definition of the basic transformations from the ER model to tables is
covered in McGee [1974], Wong and Katz [1979], Sakai [1983], Martin
[1983], Hawryszkiewyck [1984], Jajodia and Ng [1984], and for UML in
Muller [1999]. 
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his chapter focuses on the fundamentals of normal forms for rela-
tional databases and the database design step that normalizes the

candidate tables [step II(d) of the database design life cycle]. It also inves-
tigates the equivalence between the conceptual data model (e.g., the ER
model) and normal forms for tables. As we go through the examples in
this chapter, it should become obvious that good, thoughtful design of a
conceptual model will result in databases that are either already normal-
ized or can be easily normalized with minor changes. This truth illus-
trates the beauty of the conceptual modeling approach to database
design, in that the experienced relational database designer will develop
a natural gravitation toward a normalized model from the beginning.

For most database practitioners, Sections 6.1 through 6.4 cover the
critical normalization needed for everyday use, through Boyce-Codd
normal form (BCNF). Section 6.5 covers the higher normal forms of
mostly theoretical interest; however, we do show the equivalency
between higher normal forms and ternary relationships in the ER model
and UML for the interested reader.

6.1 Fundamentals of Normalization

Relational database tables, whether they are derived from ER or UML
models, sometimes suffer from some rather serious problems in terms of

T
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performance, integrity and maintainability. For example, when the
entire database is defined as a single large table, it can result in a large
amount of redundant data and lengthy searches for just a small number
of target rows. It can also result in long and expensive updates, and dele-
tions in particular can result in the elimination of useful data as an
unwanted side effect. 

Such a situation is shown in Figure 6.1, where products, salespersons,
customers, and orders are all stored in a single table called Sales. In this
table, we see that certain product and customer information is stored
redundantly, wasting storage space. Certain queries, such as “Which cus-
tomers ordered vacuum cleaners last month?” would require a search of
the entire table. Also, updates such as changing the address of the cus-
tomer Dave Bachmann would require changing many rows. Finally,
deleting an order by a valued customer such as Qiang Zhu (who bought
an expensive computer), if that is his only outstanding order, deletes the
only copy of his address and credit rating as a side effect. Such informa-
tion may be difficult (or sometimes impossible) to recover. These prob-
lems also occur for situations in which the database has already been set
up as a collection of many tables, but some of the tables are still too
large. 

If we had a method of breaking up such a large table into smaller
tables so that these types of problems would be eliminated, the database
would be much more efficient and reliable. Classes of relational database
schemes or table definitions, called normal forms, are commonly used to
accomplish this goal. The creation of a normal form database table is
called normalization. Normalization is accomplished by analyzing the

Figure 6.1 Single table database
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interdependencies among individual attributes associated with those
tables and taking projections (subsets of columns) of larger tables to
form smaller ones. 

Let us first review the basic normal forms, which have been well
established in the relational database literature and in practice. 

6.1.1 First Normal Form

Definition. A table is in first normal form (1NF) if and only if all col-
umns contain only atomic values, that is, each column can have
only one value for each row in the table. 

Relational database tables, such as the Sales table illustrated in Figure
6.1, have only atomic values for each row and for each column. Such
tables are considered to be in first normal form, the most basic level of
normalized tables.

To better understand the definition for 1NF, it helps to know the dif-
ference between a domain, an attribute, and a column. A domain is the
set of all possible values for a particular type of attribute, but may be
used for more than one attribute. For example, the domain of people’s
names is the underlying set of all possible names that could be used for
either customer-name or salesperson-name in the database table in Fig-
ure 6.1. Each column in a relational table represents a single attribute,
but in some cases more than one column may refer to different
attributes from the same domain. When this occurs, the table is still in
1NF because the values in the table are still atomic. In fact, standard SQL
assumes only atomic values and a relational table is by default in 1NF. A
nice explanation of this is given in Muller [1999].

6.1.2 Superkeys, Candidate Keys, and Primary Keys

A table in 1NF often suffers from data duplication, update performance,
and update integrity problems, as noted above. To understand these
issues better, however, we must define the concept of a key in the con-
text of normalized tables. A superkey is a set of one or more attributes,
which, when taken collectively, allows us to identify uniquely an entity
or table. Any subset of the attributes of a superkey that is also a superkey,
and not reducible to another superkey, is called a candidate key. A primary
key is selected arbitrarily from the set of candidate keys to be used in an
index for that table.
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As an example, in Figure 6.2 a composite of all the attributes of the
table forms a superkey because duplicate rows are not allowed in the
relational model. Thus, a trivial superkey is formed from the composite
of all attributes in a table. Assuming that each department address
(dept_addr) in this table is single valued, we can conclude that the com-
posite of all attributes except dept_addr is also a superkey. Looking at
smaller and smaller composites of attributes and making realistic
assumptions about which attributes are single valued, we find that the
composite (report_no, author_id) uniquely determines all the other
attributes in the table and is therefore a superkey. However, neither
report_no nor author_id alone can determine a row uniquely, and the
composite of these two attributes cannot be reduced and still be a super-
key. Thus, the composite (report_no, author_id) becomes a candidate
key. Since it is the only candidate key in this table, it also becomes the
primary key.

A table can have more than one candidate key. If, for example, in
Figure 6.2, we had an additional column for author_ssn, and the com-
posite of report_no and author_ssn uniquely determine all the other
attributes of the table, then both (report_no, author_id) and (report_no,
author_ssn) would be candidate keys. The primary key would then be an
arbitrary choice between these two candidate keys. 

Other examples of multiple candidate keys can be seen in Figure 5.5
(see Chapter 5). In Figure 5.5a the table uses_notebook has three candi-
date keys: (emp_id, project_name), (emp_id, notebook_no), and
(project_name, notebook_no); and in Figure 5.5b the table assigned_to
has two candidate keys: (emp_id, loc_name) and (emp_id, project_name).
Figures 5.5c and 5.5d each have only a single candidate key.

Figure 6.2 Report table
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6.1.3 Second Normal Form

To explain the concept of second normal form (2NF) and higher, we
introduce the concept of functional dependence, which was briefly
described in Chapter 2. The property of one or more attributes that
uniquely determine the value of one or more other attributes is called
functional dependence. Given a table (R), a set of attributes (B) is function-
ally dependent on another set of attributes (A) if, at each instant of time,
each A value is associated with only one B value. Such a functional
dependence is denoted by A -> B. In the preceding example from Figure
6.2, let us assume we are given the following functional dependencies
for the table report:

report: report_no -> editor, dept_no
dept_no -> dept_name, dept_addr
author_id -> author_name, author_addr

Definition. A table is in second normal form (2NF) if and only if it is
in 1NF and every nonkey attribute is fully dependent on the primary
key. An attribute is fully dependent on the primary key if it is on the
right side of an FD for which the left side is either the primary key
itself or something that can be derived from the primary key using
the transitivity of FDs. 

An example of a transitive FD in report is the following:

report_no -> dept_no
dept_no -> dept_name

Therefore we can derive the FD (report_no -> dept_name), since
dept_name is transitively dependent on report_no.

Continuing our example, the composite key in Figure 6.2,
(report_no, author_id), is the only candidate key and is therefore the
primary key. However, there exists one FD (dept_no -> dept_name,
dept_addr) that has no component of the primary key on the left side,
and two FDs (report_no -> editor, dept_no and author_id -> author_name,
author_addr) that contain one component of the primary key on the left
side, but not both components. As such, report does not satisfy the
condition for 2NF for any of the FDs. 
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Consider the disadvantages of 1NF in table report. Report_no, edi-
tor, and dept_no are duplicated for each author of the report. Therefore,
if the editor of the report changes, for example, several rows must be
updated. This is known as the update anomaly, and it represents a poten-
tial degradation of performance due to the redundant updating. If a new
editor is to be added to the table, it can only be done if the new editor is
editing a report: both the report number and editor number must be
known to add a row to the table, because you cannot have a primary key
with a null value in most relational databases. This is known as the insert
anomaly. Finally, if a report is withdrawn, all rows associated with that
report must be deleted. This has the side effect of deleting the informa-
tion that associates an author_id with author_name and author_addr.
Deletion side effects of this nature are known as delete anomalies. They
represent a potential loss of integrity, because the only way the data can
be restored is to find the data somewhere outside the database and insert
it back into the database. All three of these anomalies represent prob-
lems to database designers, but the delete anomaly is by far the most
serious because you might lose data that cannot be recovered.

These disadvantages can be overcome by transforming the 1NF table
into two or more 2NF tables by using the projection operator on the sub-
set of the attributes of the 1NF table. In this example we project report
over report_no, editor, dept_no, dept_name, and dept_addr to form
report1; and project report over author_id, author_name, and
author_addr to form report2; and finally project report over
report_no and author_id to form report3. The projection of report
into three smaller tables has preserved the FDs and the association
between report_no and author_no that was important in the original
table. Data for the three tables is shown in Figure 6.3. The FDs for these
2NF tables are:

report1: report_no -> editor, dept_no
dept_no -> dept_name, dept_addr

report2: author_id -> author_name, author_addr

report3: report_no, author_id is a candidate key (no FDs)

We now have three tables that satisfy the conditions for 2NF, and we
have eliminated the worst problems of 1NF, especially integrity (the
delete anomaly). First, editor, dept_no, dept_name, and dept_addr are
no longer duplicated for each author of a report. Second, an editor
change results in only an update to one row for report1. And third, the
most important, the deletion of the report does not have the side effect
of deleting the author information. 
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Not all performance degradation is eliminated, however; report_no
is still duplicated for each author, and deletion of a report requires
updates to two tables (report1 and report3) instead of one. However,
these are minor problems compared to those in the 1NF table report.

Note that these three report tables in 2NF could have been generated
directly from an ER (or UML) diagram that equivalently modeled this sit-
uation with entities Author and Report and a many-to-many relation-
ship between them. 

6.1.4 Third Normal Form

The 2NF tables we established in the previous section represent a sig-
nificant improvement over 1NF tables. However, they still suffer from

Figure 6.3 2NF tables
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the same types of anomalies as the 1NF tables although for different
reasons associated with transitive dependencies. If a transitive (func-
tional) dependency exists in a table, it means that two separate facts
are represented in that table, one fact for each functional dependency
involving a different left side. For example, if we delete a report from
the database, which involves deleting the appropriate rows from
report1 and report3 (see Figure 6.3), we have the side effect of delet-
ing the association between dept_no, dept_name, and dept_addr as
well. If we could project table report1 over report_no, editor, and
dept_no to form table report11, and project report1 over dept_no,
dept_name, and dept_addr to form table report12, we could eliminate
this problem. Example tables for report11 and report12 are shown
in Figure 6.4.

Definition. A table is in third normal form (3NF) if and only if for
every nontrivial functional dependency X->A, where X and A are
either simple or composite attributes, one of two conditions must
hold. Either attribute X is a superkey, or attribute A is a member of
a candidate key. If attribute A is a member of a candidate key, A is
called a prime attribute. Note: a trivial FD is of the form YZ->Z. 

Figure 6.4 3NF tables
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In the preceding example, after projecting report1 into report11
and report12 to eliminate the transitive dependency report_no ->
dept_no -> dept_name, dept_addr, we have the following 3NF tables and
their functional dependencies (and example data in Figure 6.4):

report11: report_no -> editor, dept_no
report12: dept_no -> dept_name, dept_addr
report2: author_id -> author_name, author_addr
report3: report_no, author_id is a candidate key (no FDs)

6.1.5 Boyce-Codd Normal Form

3NF, which eliminates most of the anomalies known in databases today,
is the most common standard for normalization in commercial data-
bases and CASE tools. The few remaining anomalies can be eliminated
by the Boyce-Codd normal form (BCNF) and higher normal forms
defined here and in Section 6.5. BCNF is considered to be a strong varia-
tion of 3NF. 

Definition. A table R is in Boyce-Codd normal form (BCNF) if for every
nontrivial FD X->A, X is a superkey.

BCNF is a stronger form of normalization than 3NF because it elimi-
nates the second condition for 3NF, which allowed the right side of the
FD to be a prime attribute. Thus, every left side of an FD in a table must
be a superkey. Every table that is BCNF is also 3NF, 2NF, and 1NF, by the
previous definitions.

The following example shows a 3NF table that is not BCNF. Such
tables have delete anomalies similar to those in the lower normal forms. 

Assertion 1. For a given team, each employee is directed by only one
leader. A team may be directed by more than one leader.

emp_name, team_name -> leader_name

Assertion 2. Each leader directs only one team.

leader_name -> team_name
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This table is 3NF with a composite candidate key emp_id, team_id:

The team table has the following delete anomaly: if Sutton drops
out of the Condors team, then we have no record of Bachmann leading
the Condors team. As shown by Date [1999], this type of anomaly can-
not have a lossless decomposition and preserve all FDs. A lossless decom-
position requires that when you decompose the table into two smaller
tables by projecting the original table over two overlapping subsets of
the scheme, the natural join of those subset tables must result in the
original table without any extra unwanted rows. The simplest way to
avoid the delete anomaly for this kind of situation is to create a separate
table for each of the two assertions. These two tables are partially redun-
dant, enough so to avoid the delete anomaly. This decomposition is loss-
less (trivially) and preserves functional dependencies, but it also
degrades update performance due to redundancy, and necessitates addi-
tional storage space. The trade-off is often worth it because the delete
anomaly is avoided.

6.2 The Design of Normalized Tables: A Simple Example

The example in this section is based on the ER diagram in Figure 6.5 and
the FDs given below. In general, FDs can be given explicitly, derived
from the ER diagram, or derived from intuition (that is, from experience
with the problem domain). 

1. emp_id, start_date -> job_title, end_date

2. emp_id -> emp_name, phone_no, office_no, proj_no, proj_name,
dept_no

3. phone_no -> office_no

team: emp_name team_name leader_name

Sutton Hawks Wei

Sutton Condors Bachmann

Niven Hawks Wei

Niven Eagles Makowski

Wilson Eagles DeSmith
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4. proj_no -> proj_name, proj_start_date, proj_end_date

5. dept_no -> dept_name, mgr_id

6. mgr_id -> dept_no

Our objective is to design a relational database schema that is nor-
malized to at least 3NF and, if possible, minimize the number of tables
required. Our approach is to apply the definition of third normal form
(3NF) in Section 6.1.4 to the FDs given above, and create tables that sat-
isfy the definition. 

If we try to put FDs 1 through 6 into a single table with the compos-
ite candidate key (and primary key) (emp_id, start_date), we violate the
3NF definition, because FDs 2 through 6 involve left sides of FDs that are
not superkeys. Consequently, we need to separate 1 from the rest of the
FDs. If we then try to combine 2 through 6, we have many transitivities.
Intuitively, we know that 2, 3, 4, and 5 must be separated into different
tables because of transitive dependencies. We then must decide whether
5 and 6 can be combined without loss of 3NF; this can be done because
mgr_id and dept_no are mutually dependent and both attributes are

Figure 6.5 ER diagram for employee database
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superkeys in a combined table. Thus, we can define the following tables
by appropriate projections from 1 through 6.

emp_hist:  emp_id, start_date -> job_title, end_date

employee:  emp_id -> emp_name, phone_no, proj_no, dept_no

phone:  phone_no -> office_no

project:  proj_no -> proj_name, proj_start_date, proj_end_date

department: dept_no -> dept_name, mgr_id
mgr_id -> dept_no

This solution, which is BCNF as well as 3NF, maintains all the origi-
nal FDs. It is also a minimum set of normalized tables. In Section 6.4, we
will look at a formal method of determining a minimum set that we can
apply to much more complex situations. 

Alternative designs may involve splitting tables into partitions for
volatile (frequently updated) and passive (rarely updated) data, consoli-
dating tables to get better query performance, or duplicating data in dif-
ferent tables to get better query performance without losing integrity. In
summary, the measures we use to assess the trade-offs in our design are:

• Query performance (time)

• Update performance (time)

• Storage performance (space)

• Integrity (avoidance of delete anomalies)

6.3 Normalization of Candidate Tables Derived from 
ER Diagrams

Normalization of candidate tables [step II(d) in the database life cycle] is
accomplished by analyzing the FDs associated with those tables: explicit
FDs from the database requirements analysis (Section 6.2), FDs derived
from the ER diagram, and FDs derived from intuition.

Primary FDs represent the dependencies among the data elements that
are keys of entities, that is, the interentity dependencies. Secondary FDs, on
the other hand, represent dependencies among data elements that com-
prise a single entity, that is, the intraentity dependencies. Typically, pri-
mary FDs are derived from the ER diagram, and secondary FDs are
obtained explicitly from the requirements analysis. If the ER constructs do
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not include nonkey attributes used in secondary FDs, the data require-
ments specification or data dictionary must be consulted. Table 6.1 shows
the types of primary FDs derivable from each type of ER construct.

Each candidate table will typically have several primary and second-
ary FDs uniquely associated with it that determine the current degree of
normalization of the table. Any of the well-known techniques for
increasing the degree of normalization can be applied to each table to
the desired degree stated in the requirements specification. Integrity is
maintained by requiring the normalized table schema to include all data
dependencies existing in the candidate table schema. 

Any table B that is subsumed by another table A can potentially be
eliminated. Table B is subsumed by another table A when all the
attributes in B are also contained in A, and all data dependencies in B
also occur in A. As a trivial case, any table containing only a composite
key and no nonkey attributes is automatically subsumed by any other
table containing the same key attributes, because the composite key is
the weakest form of data dependency. If, however, tables A and B repre-
sent the supertype and subtype cases, respectively, of entities defined by
the generalization abstraction, and A subsumes B because B has no
additional specific attributes, the designer must collect and analyze addi-
tional information to decide whether or not to eliminate B.

A table can also be subsumed by the construction of a join of two
other tables (a “join” table). When this occurs, the elimination of a sub-

Table 6.1 Primary FDs Derivable from ER Relationship Constructs

Degree Connectivity Primary FD

Binary or one-to-one 2 ways: key(one side) -> key(one side)

Binary one-to-many key(many side) -> key(one side)

Recursive many-to-many none (composite key from both sides)

Ternary one-to-one-to-one 3 ways: key(one), key(one) -> key(one)

one-to-one-to-many 2 ways: key(one), key(many) -> 
key(one)

one-to-many-to-many 1 way: key(many), key(many) -> 
key(one)

many-to-many-to-many none (composite key from all 3 sides)

Generalization none none (secondary FD only)
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sumed table may result in the loss of retrieval efficiency, although stor-
age and update costs will tend to be decreased. This trade-off must be
further analyzed during physical design with regard to processing
requirements to determine whether elimination of the subsumed table is
reasonable.

To continue our example company personnel and project database,
we want to obtain the primary FDs by applying the rules in Table 6.1 to
each relationship in the ER diagram in Figure 4.3. The results are shown
in Table 6.2.

Next we want to determine the secondary FDs. Let us assume that
the dependencies in Table 6.3 are derived from the requirements specifi-
cation and intuition.

Normalization of the candidate tables is accomplished next. In Table
6.4 we bring together the primary and secondary FDs that apply to each
candidate table. We note that for each table except employee, all
attributes are functionally dependent on the primary key (denoted by
the left side of the FDs) and are thus BCNF. In the case of table
employee, we note that spouse_id determines emp_id and emp_id is
the primary key; thus spouse_id can be shown to be a superkey (see
Superkey Rule 2 in Section 6.4). Therefore, employee is found to be
BCNF. 

Table 6.2 Primary FDs Derived from the ER Diagram in Figure 4.3

dept_no -> div_no in Department from relationship “contains”

emp_id -> dept_no in Employee from relationship “has”

div_no -> emp_id in Division from relationship “is-headed-by”

dept_no -> emp_id from binary relationship “is-managed-by”

emp_id -> desktop_no from binary relationship “has-allocated”

desktop_no -> emp_no from binary relationship “has-allocated”

emp_id -> spouse_id from binary recursive relationship 
“is-married-to”

spouse_id -> emp_id from binary recursive relationship 
“is-married-to”

emp_id, loc_name -> project_name from ternary relationship “assigned-to”
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In general, we observe that candidate tables, like the ones shown in
Table 6.4, are fairly good indicators of the final schema and normally
require very little refinement to get to 3NF or BCNF. This observation is
important—good initial conceptual design usually results in tables that
are already normalized or are very close to being normalized, and thus
the normalization process is usually a simple task.

Table 6.3 Secondary FDs Derived from the Requirements Specification

div_no -> div_name, div_addr from entity Division

dept_no -> dept_name, dept_addr, mgr_id from entity Department

emp_id -> emp_name, emp_addr, office_no, phone_no from entity Employee

skill_type -> skill_descrip from entity Skill

project_name -> start_date, end_date, head_id from entity Project

loc_name -> loc_county, loc_state, zip from entity Location

mgr_id -> mgr_start_date, beeper_phone_no from entity Manager

assoc_name -> assoc_addr, phone_no, start_date from entity Prof-assoc

desktop_no -> computer_type, serial_no from entity Desktop

Table 6.4 Candidate Tables (and FDs) from ER Diagram Transformation

division div_no -> div_name, div_addr

div_no -> emp_id

department dept_no -> dept_name, dept_addr, mgr_id
dept_no -> div_no
dept_no -> emp_id

employee emp_id -> emp_name, emp_addr, office_no, phone_no
emp_id -> dept_no
emp_id -> spouse_id
spouse_id -> emp_id

manager mgr_id -> mgr_start_date, beeper_phone_no

secretary none

engineer emp_id -> desktop_no
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6.4 Determining the Minimum Set of 3NF Tables

A minimum set of 3NF tables can be obtained from a given set of FDs by
using the well-known synthesis algorithm developed by Bernstein
[1976]. This process is particularly useful when you are confronted with
a list of hundreds or thousands of FDs that describe the semantics of a
database. In practice, the ER modeling process automatically decom-
poses this problem into smaller subproblems: the attributes and FDs of
interest are restricted to those attributes within an entity (and its equiva-
lent table) and any foreign keys that might be imposed upon that table.
Thus, the database designer will rarely have to deal with more than ten
or twenty attributes at a time, and in fact most entities are initially
defined in 3NF already. For those tables that are not yet in 3NF, only
minor adjustments will be needed in most cases. 

In the following text we briefly describe the synthesis algorithm for
those situations where the ER model is not useful for the decomposition.
In order to apply the algorithm, we make use of the well-known Arm-
strong axioms, which define the basic relationships among FDs.

Inference rules (Armstrong axioms)

technician none

skill skill_type -> skill_descrip

project project_name -> start_date, end_date, head_id

location loc_name -> loc_county, loc_state, zip

prof_assoc assoc_name -> assoc_addr, phone_no, start_date

desktop desktop_no -> computer_type, serial_no
desktop_no -> emp_no

assigned_to emp_id, loc_name -> project_name

skill_used none

Reflexivity If Y is a subset of the attributes of X, then X -> Y 
(i.e., if X is ABCD and Y is ABC, then X -> Y. 
Trivially, X -> X)

Augmentation If X -> Y and Z is a subset of table R 
(i.e., Z is any attribute in R), then XZ -> YZ.

Table 6.4 Candidate Tables (and FDs) from ER Diagram Transformation (continued)
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These axioms can be used to derive two practical rules of thumb for
deriving superkeys of tables where at least one superkey is already
known. 

Superkey Rule 1. Any FD involving all attributes of a table defines a
superkey as the left side of the FD.

Given: Any FD containing all attributes in the table R(W,X,Y,Z), 
i.e., XY -> WZ.

Proof:

1. XY -> WZ as given.

2. XY -> XY by applying the reflexivity axiom.

3. XY -> XYWZ by applying the union axiom.

4. XY uniquely determines every attribute in table R, as shown in 3.

5. XY uniquely defines table R, by the definition of a table as having
no duplicate rows.

6. XY is therefore a superkey, by definition.

Superkey Rule 2. Any attribute that functionally determines a super-
key of a table is also a superkey for that table.

Given: Attribute A is a superkey for table R(A,B,C,D,E), and E -> A.

Proof:

1. Attribute A uniquely defines each row in table R, by the defini-
tion of a superkey.

2. A -> ABCDE by applying the definition of a superkey and a rela-
tional table.

3. E -> A as given.

4. E -> ABCDE by applying the transitivity axiom.

5. E is a superkey for table R, by definition.

Transitivity If X->Y and Y->Z, then X->Z.

Pseudotransitivity If X->Y and YW->Z, then XW->Z. 

(Transitivity is a special case of pseudotransitivity 
when W = null.)

Union If X->Y and X->Z, then X->YZ 
(or equivalently, X->Y,Z).

Decomposition If X->YZ, then X->Y and X->Z.
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Before we can describe the synthesis algorithm, we must define some
important concepts. Let H be a set of FDs that represents at least part of
the known semantics of a database. The closure of H, specified by H+, is
the set of all FDs derivable from H using the Armstrong axioms or infer-
ence rules. For example, we can apply the transitivity rule to the follow-
ing FDs in set H:

A -> B, B -> C, A -> C, and C -> D

to derive the FDs A -> D and B -> D. All six FDs constitute the closure H+.
A cover of H, called H’, is any set of FDs from which H+ can be derived.
Possible covers for this example are:

1. A->B, B->C, C->D, A->C, A->D, B->D (trivial case where H’ and H+
are equal)

2. A->B, B->C, C->D, A->C, A->D

3. A->B, B->C, C->D, A->C (this is the original set H)

4. A->B, B->C, C->D 

A nonredundant cover of H is a cover of H that contains no proper
subset of FDs, which is also a cover. The synthesis algorithm requires
nonredundant covers.

3NF Synthesis Algorithm

Given a set of FDs, H, we determine a minimum set of tables in 3NF.

From this point the process of arriving at the minimum set of 3NF
tables consists of five steps:

1. Eliminate extraneous attributes in the left sides of the FDs

2. Search for a nonredundant cover, G of H

H: AB->C DM->NP

A->DEFG D->M

E->G L->D

F->DJ PQR->ST

G->DI PR->S

D->KL
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3. Partition G into groups so that all FDs with the same left side are
in one group

4. Merge equivalent keys

5. Define the minimum set of normalized tables

Now we discuss each step in turn, in terms of the preceding set of
FDs, H.

Step 1. Elimination of Extraneous Attributes

The first task is to get rid of extraneous attributes in the left sides of the
FDs. 

The following two relationships (rules) among attributes on the left
side of an FD provide the means to reduce the left side to fewer
attributes.

Reduction Rule 1. XY->Z and X->Z => Y is extraneous on the left side
(applying the reflexivity and transitivity axioms).

Reduction Rule 2. XY->Z and X->Y => Y is extraneous; therefore X->Z
(applying the pseudotransitivity axiom).

Applying these reduction rules to the set of FDs in H, we get:

DM->NP and D->M => D->NP

PQR->ST and PR->S => PQR->T

Step 2. Search for a Nonredundant Cover

We must eliminate any FD derivable from others in H using the infer-
ence rules.

Transitive FDs to be eliminated:

A->E and E->G => eliminate A->G

A->F and F->D => eliminate A->D

Step 3. Partitioning of the Nonredundant Cover

To partition the nonredundant cover into groups so that all FDs with the
same left side are in one group, we must separate the nonfully func-
tional dependencies and transitive dependencies into separate tables. At
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this point we have a feasible solution for 3NF tables, but it is not neces-
sarily the minimum set.

These nonfully functional dependencies must be put into separate
tables:

AB->C

A->EF

Groups with the same left side:

Step 4. Merge of Equivalent Keys (Merge of Tables)

In this step we merge groups with left sides that are equivalent (for
example, X->Y and Y->X imply that X and Y are equivalent). This step
produces a minimum set. 

1. Write out the closure of all left side attributes resulting from Step
3, based on transitivities.

2. Using the closures, find tables that are subsets of other groups and
try to merge them. Use Superkey Rule 1 and Superkey Rule 2 to
establish whether the merge will result in FDs with superkeys on
the left side. If not, try using the axioms to modify the FDs to fit
the definition of superkeys.

3. After the subsets are exhausted, look for any overlaps among
tables and apply Superkey Rules 1 and 2 (and the axioms) again. 

In this example, note that G7 (L->D) has a subset of the attributes of
G6 (D->KLMNP). Therefore, we merge to a single table, R6, with FDs
D->KLMNP and L->D, because it satisfies 3NF: D is a superkey by Super-
key Rule 1, and L is a superkey by Superkey Rule 2.

G1: AB->C G6: D->KLMNP

G2: A->EF G7: L->D

G3: E->G G8: PQR->T

G4: G->DI G9: PR->S

G5: F->DJ
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Step 5. Definition of the Minimum Set of Normalized Tables

The minimum set of normalized tables has now been computed. We
define them below in terms of the table name, the attributes in the table,
the FDs in the table, and the candidate keys for that table:

Note that this result is not only 3NF, but also BCNF, which is very
frequently the case. This fact suggests a practical algorithm for a (near)
minimum set of BCNF tables: Use Bernstein’s algorithm to attain a mini-
mum set of 3NF tables, then inspect each table for further decomposi-
tion (or partial replication, as shown in Section 6.1.5) to BCNF. 

6.5 Fourth and Fifth Normal Forms

Normal forms up to BCNF were defined solely on FDs, and, for most
database practitioners, either 3NF or BCNF is a sufficient level of normal-
ization. However, there are in fact two more normal forms that are
needed to eliminate the rest of the currently known anomalies. In this
section, we will look at different types of constraints on tables: multival-
ued dependencies and join dependencies. If these constraints do not
exist in a table, which is the most common situation, then any table in
BCNF is automatically in fourth normal form (4NF), and fifth normal
form (5NF) as well. However, when these constraints do exist, there may
be further update (especially delete) anomalies that need to be corrected.
First, we must define the concept of multivalued dependency.

6.5.1 Multivalued Dependencies

Definition. In a multivalued dependency (MVD), X->>Y holds on table
R with table scheme RS if, whenever a valid instance of table
R(X,Y,Z) contains a pair of rows that contain duplicate values of X,

R1: ABC (AB->C with key AB) R5: DFJ (F->DJ with key F)

R2: AEF (A->EF with key A) R6: DKLMNP (D->KLMNP, L->D, 
with keys D, L)

R3: EG (E->G with key E) R7: PQRT (PQR->T with key PQR)

R4: DGI (G->DI with key G) R8: PRS (PR->S with key PR)
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then the instance also contains the pair of rows obtained by inter-
changing the Y values in the original pair. This includes situations
where only pairs of rows exist. Note that X and Y may contain either
single or composite attributes. 

An MVD X ->> Y is trivial if Y is a subset of X, or if X union Y = RS.
Finally, an FD implies an MVD, which implies that a single row with a
given value of X is also an MVD, albeit a trivial form. 

The following examples show where an MVD does and does not
exist in a table. In R1, the first four rows satisfy all conditions for the
MVDs X->>Y and X->>Z. Note that MVDs appear in pairs because of the
cross-product type of relationship between Y and Z=RS-Y as the two
right sides of the two MVDs. The fifth and sixth rows of R1 (when the X
value is 2) satisfy the row interchange conditions in the above defini-
tion. In both rows, the Y value is 2, so the interchanging of Y values is
trivial. The seventh row (3,3,3) satisfies the definition trivially. 

In table R2, however, the Y values in the fifth and sixth rows are dif-
ferent (1 and 2), and interchanging the 1 and 2 values for Y results in a
row (2,2,2) that does not appear in the table. Thus, in R2 there is no
MVD between X and Y or between X and Z, even though the first four
rows satisfy the MVD definition. Note that for the MVD to exist, all rows
must satisfy the criterion for an MVD. 

Table R3 contains the first three rows that do not satisfy the crite-
rion for an MVD, since changing Y from 1 to 2 in the second row results
in a row that does not appear in the table. Similarly, changing Z from 1
to 2 in the third row results in a nonappearing row. Thus, R3 does not
have any MVDs between X and Y or between X and Z. 

R1: X Y Z R2: X Y Z R3: X Y Z

1 1 1 1 1 1 1 1 1

1 1 2 1 1 2 1 1 2

1 2 1 1 2 1 1 2 1

1 2 2 1 2 2 2 2 1

2 2 1 2 2 1 2 2 2

2 2 2 2 1 2

3 3 3
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By the same argument, in table R1 we have the MVDs Y->> X and
Y->>Z, but none with Z on the left side. Tables R2 and R3 have no
MVDs at all.

The following inference rules for MVDs are somewhat analogous to
the inference rules for functional dependencies given in Section 6.4
[Beeri, Fagin, and Howard, 1977]. They are quite useful in the analysis
and decomposition of tables into 4NF.

Multivalued Dependency Inference Rules 

6.5.2 Fourth Normal Form

The goal of 4NF is to eliminate nontrivial MVDs from a table by project-
ing them onto separate smaller tables, and thus to eliminate the update
anomalies associated with the MVDs. This type of normal form is rea-
sonably easy to attain if you know where the MVDs are. In general,
MVDs must be defined from the semantics of the database; they cannot
be determined from just looking at the data. The current set of data can
only verify whether your assumption about an MVD is currently true or
not, but this may change each time the data is updated.

Reflexivity X -->> X

Augmentation If X -->> Y, then XZ -->> Y.

Transitivity If X -->>Y and Y -->> Z, then X -->> (Z-Y).

Pseudotransitivity If X -->> Y and YW -->> Z, then XW -->> (Z-YW).

(Transitivity is a special case of pseudotransitivity 
when W is null.)

Union If X -->> Y and X -->> Z, then X -->> YZ.

Decomposition If X -->> Y and X -->> Z, then X -->> Y intersect Z 
and X -->> (Z-Y).

Complement If X -->> Y and Z=R-X-Y, then X -->> Z.

FD Implies MVD If X -> Y, then X -->> Y.

FD, MVD Mix If X -->> Z and Y -->> Z’ (where Z’ is contained in 
Z, and Y and Z are disjoint), then X->Z’. 
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Definition. A table R is in fourth normal form (4NF) if and only if it is
in BCNF and, whenever there exists an MVD in R (say X ->> Y), at
least one of the following holds: the MVD is trivial, or X is a super-
key for R.

Applying this definition to the three tables in the example in the
previous section, we see that R1 is not in 4NF because at least one non-
trivial MVD exists and no single column is a superkey. In tables R2 and
R3, however, there are no MVDs. Thu,s these two tables are at least 4NF.

As an example of the transformation of a table that is not in 4NF to
two tables that are in 4NF, we observe the ternary relationship skill-
required, shown in Figure 6.6. The relationship skill-required is defined
as follows: “An employee must have all the required skills needed for a
project to work on that project.” For example, in Table 6.5 the project
with proj_no = 3 requires skill types A and B by all employees (see
employees 101 and 102). The table skill_required has no FDs, but it
does have several nontrivial MVDs, and is therefore only in BCNF. In
such a case it can have a lossless decomposition into two many-to-many
binary relationships between the entities Employee and Project, and
Project and Skill. Each of these two new relationships represents a table
in 4NF. It can also have a lossless decomposition resulting in a binary
many-to-many relationship between the entities Employee and Skill,
and Project and Skill.

A two-way lossless decomposition occurs when skill_required is
projected over (emp_id, proj_no) to form skill_req1 and projected over
(proj_no, skill_type) to form skill_req3. Projection over (emp_id,

Figure 6.6 Ternary relationship with multiple interpretations

Employee

Skill ProjectN N

N

** (1) skill-required
(2) skill-in-common
(3) skill-used

**
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proj_no) to form skill_req1 and over (emp_id, skill_type) to form
skill_req2, however, is not lossless. A three-way lossless decomposition
occurs when skill_required is projected over (emp_id, proj_no),
(emp_id, skill_type), and (proj_no, skill_type).

Tables in 4NF avoid certain update anomalies (or inefficiences). For
instance, a delete anomaly exists when two independent facts get tied
together unnaturally so that there may be bad side effects of certain
deletes. For example, in skill_required, the last row of a skill_type may
be lost if an employee is temporarily not working on any projects. An
update inefficiency may occur when adding a new project in
skill_required, which requires insertions for many rows to include all
the required skills for that new project. Likewise, loss of a project
requires many deletions. These inefficiencies are avoided when

Table 6.5 The Table skill_required and Its Three Projections

skill_required emp_id proj_no skill_type MVDs(nontrivial)

101 3 A proj_no ->> skill_type

101 3 B proj_no ->> emp_id

101 4 A

101 4 C

102 3 A

102 3 B

103 5 D

skill_req1 skill_req2 skill_req3

emp_id proj_no emp_id skill_type proj_no skill_type

101 3 101 A 3 A

101 4 101 B 3 B

102 3 101 C 4 A

103 5 102 A 4 C

102 B 5 D

103 D
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skill_required is decomposed into skill_req1 and skill_req3. In
general (but not always), decomposition of a table into 4NF tables results
in less data redundancy.

6.5.3 Decomposing Tables to 4NF

Algorithms to decompose tables into 4NF are difficult to develop. Let’s
look at some straightforward approaches to 4NF from BCNF and lower
normal forms. First, if a table is BCNF, it either has no FDs, or each FD is
characterized by its left side being a superkey. Thus, if the only MVDs in
this table are derived from its FDs, they have only superkeys as their left
sides, and the table is 4NF by definition. If, however, there are other
nontrivial MVDs whose left sides are not superkeys, the table is only in
BCNF and must be decomposed to achieve higher normalization.

The basic decomposition process from a BCNF table is defined by
selecting the most important MVD (or if that is not possible, then by
selecting one arbitrarily), defining its complement MVD, and decom-
pose the table into two tables containing the attributes on the left and
right sides of that MVD and its complement. This type of decomposition
is lossless because each new table is based on the same attribute, which
is the left side of both MVDs. The same MVDs in these new tables are
now trivial because they contain every attribute in the table. However,
other MVDs may be still present, and more decompositions by MVDs
and their complements may be necessary. This process of arbitrary selec-
tion of MVDs for decomposition is continued until only trivial MVDs
exist, leaving the final tables in 4NF. 

As an example, let R(A,B,C,D,E,F) with no FDs, and with MVDs A ->>
B and CD ->> EF. The first decomposition of R is into two tables R1(A,B)
and R2(A,C,D,E,F) by applying the MVD A ->> B and its complement
A ->> CDEF. Table R1 is now 4NF, because A ->> B is trivial and is the
only MVD in the table. Table R2, however, is still only BCNF, because of
the nontrivial MVD CD ->> EF. We then decompose R2 into
R21(C,D,E,F) and R22(C,D,A) by applying the MVD CD ->> EF and its
complement CD ->> A. Both R21 and R22 are now 4NF. If we had
applied the MVD complement rule in the opposite order, using CD ->>
EF and its complement CD ->> AB first, the same three 4NF tables would
result from this method. However, this does not occur in all cases; it
only occurs in those tables where the MVDs have no intersecting
attributes.

This method, in general, has the unfortunate side effect of poten-
tially losing some or all of the FDs and MVDs. Therefore, any decision to
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transform tables from BCNF to 4NF must take into account the trade-off
between normalization and the elimination of delete anomalies, and the
preservation of FDs and possibly MVDs. It should also be noted that this
approach derives a feasible, but not necessarily a minimum, set of 4NF
tables.

A second approach to decomposing BCNF tables is to ignore the
MVDs completely and split each BCNF table into a set of smaller tables,
with the candidate key of each BCNF table being the candidate key of a
new table and the nonkey attributes distributed among the new tables in
some semantically meaningful way. This form of decomposing by candi-
date key (that is, superkey) is lossless because the candidate keys
uniquely join; it usually results in the simplest form of 5NF tables, those
with a candidate key and one nonkey attribute, and no MVDs. However,
if one or more MVDs still exist, further decomposition must be done
with the MVD/MVD-complement approach given above. The decompo-
sition by candidate keys preserves FDs, but the MVD/MVD-complement
approach does not preserve either FDs or MVDs.

Tables that are not yet in BCNF can also be directly decomposed into
4NF using the MVD/MVD-complement approach. Such tables can often
be decomposed into smaller minimum sets than those derived from
transforming into BCNF first and then 4NF, but with a greater cost of
lost FDs. In most database design situations, it is preferable to develop
BCNF tables first, then evaluate the need to normalize further while pre-
serving the FDs.

6.5.4 Fifth Normal Form

Definition. A table R is in fifth normal form (5NF) or project-join nor-
mal form (PJ/NF) if and only if every join dependency in R is
implied by the keys of R. 

As we recall, a lossless decomposition of a table implies that it can be
decomposed by two or more projections, followed by a natural join of
those projections (in any order) that results in the original table, without
any spurious or missing rows. The general lossless decomposition con-
straint, involving any number of projections, is also known as a join
dependency (JD). A join dependency is illustrated by the following exam-
ple: in a table R with n arbitrary subsets of the set of attributes of R, R
satisfies a join dependency over these n subsets if and only if R is equal
to the natural join of its projections on them. A JD is trivial if one of the
subsets is R itself. 
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5NF or PJ/NF requires satisfaction of the membership algorithm
[Fagin, 1979], which determines whether a JD is a member of the set of
logical consequences of (can be derived from) the set of key dependen-
cies known for this table. In effect, for any 5NF table, every dependency
(FD, MVD, JD) is determined by the keys. As a practical matter we note
that because JDs are very difficult to determine in large databases with
many attributes, 5NF tables are not easily derivable, and logical database
design typically produces BCNF tables.

We should also note that by the preceding definitions, just because a
table is decomposable does not necessarily mean it is not 5NF. For exam-
ple, consider a simple table with four attributes (A,B,C,D), one FD (A-
>BCD), and no MVDs or JDs not implied by this FD. It could be decom-

Table 6.6 The Table skill_in_common and Its Three Projections

skill_in_common emp_id proj_no skill_type

101 3 A

101 3 B

101 4 A

101 4 B

102 3 A

102 3 B

103 3 A

103 4 A

103 5 A

103 5 C

skill_in_com1 skill_in_com2 skill_in_com3

emp_id proj_no emp_id skill_type proj_no skill_type

101 3 101 A 3 A

101 4 101 B 3 B

102 3 102 A 4 A

103 3 102 B 4 B

103 4 103 A 5 A

103 5 103 C 5 C
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posed into three tables, A->B, A->C, and A->D, all based on the same
superkey A; however, it is already in 5NF without the decomposition.
Thus, the decomposition is not required for normalization. On the other
hand, decomposition can be a useful tool in some instances for perfor-
mance improvement.

The following example demonstrates that a table representing a ter-
nary relationship may not have any two-way lossless decompositions;
however, it may have a three-way lossless decomposition, which is
equivalent to three binary relationships, based on the three possible pro-
jections of this table. This situation occurs in the relationship skill-in-
common (Figure 6.6), which is defined as “The employee must apply the
intersection of his or her available skills with the skills needed to work
on certain projects.” In this example, skill-in-common is less restrictive
than skill-required because it allows an employee to work on a project
even if he or she does not have all the skills required for that project. 

As Table 6.6 shows, the three projections of skill_in_common
result in a three-way lossless decomposition. There are no two-way loss-
less decompositions and no MVDs; thus, the table skill_in_common is
in 4NF.

The ternary relationship in Figure 6.6 can be interpreted yet another
way. The meaning of the relationship skill-used is “We can selectively
record different skills that each employee applies to working on individ-
ual projects.” It is equivalent to a table in 5NF that cannot be decom-
posed into either two or three binary tables. Note by studying Table 6.7
that the associated table, skill_used, has no MVDs or JDs.

Table 6.7 The Table skill_used, Its Three Projections, and Natural Joins of 
Its Projections

skill_used emp_id proj_no skill_type

101 3 A

101 3 B

101 4 A

101 4 C

102 3 A

102 3 B

102 4 A

102 4 B
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A table may have constraints that are FDs, MVDs, and JDs. An MVD
is a special case of a JD. To determine the level of normalization of the
table, analyze the FDs first to determine normalization through BCNF;
then analyze the MVDs to determine which BCNF tables are also 4NF;
then, finally, analyze the JDs to determine which 4NF tables are also
5NF. 

Three projections on skill_used result in:

skill_used1 skill_used2 skill_used3

emp_id proj_no proj_no skill_type emp_id skill_type

101 3 3 A 101 A

101 4 3 B 101 B

102 3 4 A 101 C

102 4 4 B 102 A

4 C 102 B

join skill_used1 with 
skill_used2 to form:

join skill_used12 with 
skill_used3 to form:

skill_used_12 skill_used_123

emp_id proj_no skill_type emp_id proj_no skill_type

101 3 A 101 3 A

101 3 B 101 3 B

101 4 A 101 4 A

101 4 B 101 4 B (spurious)

101 4 C 101 4 C

102 3 A 102 3 A

102 3 B 102 3 B

102 4 A 102 4 A

102 4 B 102 4 B

102 4 C

Table 6.7 The Table skill_used, Its Three Projections, and Natural Joins of 
Its Projections (continued)
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A many-to-many-to-many ternary relationship is:

• BCNF if it can be replaced by two binary relationships

• 4NF if it can only be replaced by three binary relationships

• 5NF if it cannot be replaced in any way (and thus is a true ternary
relationship)

We observe the equivalence between certain ternary relationships
and the higher normal form tables transformed from those relation-
ships. Ternary relationships that have at least one “one” entity cannot
be decomposed (or broken down) into binary relationships, because that
would destroy the one or more FDs required in the definition, as shown
previously. A ternary relationship with all “many” entities, however, has
no FDs, but in some cases may have MVDs, and thus have a lossless
decomposition into equivalent binary relationships. 

In summary, the three common cases that illustrate the correspon-
dence between a lossless decomposition in a many-to-many-to-many
ternary relationship table and higher normal forms in the relational
model are shown in Table 6.8. 

6.6 Summary

In this chapter, we defined the constraints imposed on tables—most
commonly the functional dependencies or FDs. Based on these con-
straints, practical normal forms for database tables are defined: 1NF, 2NF,
3NF, and BCNF. All are based on the types of FDs present. In this chapter,
a practical algorithm for finding the minimum set of 3NF tables is given. 

Table 6.8 Summary of Higher Normal Forms

Table Name Normal Form
Two-way Lossless
decomp/join?

Three-way Lossless
decomp/join?

Nontrivial
MVDs

skill_required BCNF yes yes 2

skill_in_
common

4NF no yes 0

skill_used 5NF no no 0
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The following statements summarize the functional equivalence
between the ER model and normalized tables:

1. Within an entity. The level of normalization is totally dependent
upon the interrelationships among the key and nonkey
attributes. It could be any form from unnormalized to BCNF or
higher.

2. Binary (or binary recursive) one-to-one or one-to-many relationship.
Within the “child” entity, the foreign key (a replication of the pri-
mary key of the “parent”) is functionally dependent upon the
child’s primary key. This is at least BCNF, assuming that the entity
by itself, without the foreign key, is already BCNF.

3. Binary (or binary recursive) many-to-many relationship. The intersec-
tion table has a composite key and possibly some nonkey
attributes functionally dependent upon it. This is at least BCNF.

4. Ternary relationship.

a. one-to-one-to-one => three overlapping composite keys, at
least BCNF

b. one-to-one-to-many => two overlapping composite keys, at
least BCNF

c. one-to-many-to-many => one composite key, at least BCNF
d. many-to-many-to-many => one composite key with three

attributes, at least BCNF; in some cases it can be also 4NF, or
even 5NF

In summary, we observed that a good, methodical conceptual design
procedure often results in database tables that are either normalized
(BCNF) already, or can be normalized with very minor changes.

6.7 Literature Summary

Good summaries of normal forms can be found in Date [1999], Kent
[1983], Dutka and Hanson [1989], and Smith [1985]. Algorithms for nor-
mal form decomposition and synthesis techniques are given in Bern-
stein [1976], Fagin [1977], and Maier [1983]. The earliest work in normal
forms was done by Codd [1970, 1974].
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7An Example of Logical 
Database Design

he following example illustrates how to proceed through the require-
ments analysis and logical design steps of the database life cycle, in a

practical way, for a relational database. 

7.1 Requirements Specification

The management of a large retail store would like a database to keep
track of sales activities. The requirements analysis for this database led to
the six entities and their unique identifiers shown in Table 7.1.

The following assertions describe the data relationships:

• Each customer has one job title, but different customers may have
the same job title.

• Each customer may place many orders, but only one customer
may place a particular order.

• Each department has many salespeople, but each salesperson
must work in only one department.

• Each department has many items for sale, but each item is sold in
only one department. (“Item” means item type, like IBM PC).

T
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• For each order, items ordered in different departments must
involve different salespeople, but all items ordered within one
department must be handled by exactly one salesperson. In other
words, for each order, each item has exactly one salesperson; and
for each order, each department has exactly one salesperson.

For physical design (e.g., access methods, etc.) it is necessary to
determine what kind of processing needs to be done on the data; that is,
what are the queries and updates needed to satisfy the user require-
ments, and what are their frequencies? In addition, the requirements
analysis should determine whether there will be substantial database
growth (i.e., volumetrics); in what time frame that growth will take
place; and whether the frequency and type of queries and updates will
change, as well. Decay as well as growth should be estimated, as each
will have significant effect on the later stages of database design.

7.1.1 Design Problems

1. Using the information given and, in particular, the five assertions,
derive a conceptual data model and a set of functional dependen-
cies (FDs) that represent all the known data relationships.

2. Transform the conceptual data model into a set of candidate SQL
tables. List the tables, their primary keys, and other attributes.

3. Find the minimum set of normalized (BCNF) tables that are func-
tionally equivalent to the candidate tables. 

Table 7.1 Requirements Analysis Results

Entity 
Entity key
in characters

Key
length(max)

Number of
occurrences

Customer cust-no 6 80,000

Job job-no 24 80

Order order-no 9 200,000

Salesperson sales-id 20 150

Department dept-no 2 10

Item item-no 6 5,000
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7.2 Logical Design

Our first step is to develop a conceptual data model diagram and a set of
FDs to correspond to each of the assertions given. Figure 7.1 presents the
diagram for the ER model, and Figure 7.2 shows the equivalent diagram
for UML. Normally, the conceptual data model is developed without
knowing all the FDs, but in this example the nonkey attributes are omit-
ted so that the entire database can be represented with only a few state-
ments and FDs. The result of this analysis, relative to each of the asser-
tions given, follows in Table 7.2.

The candidate tables required to represent the semantics of this
problem can be derived easily from the constructs for entities and rela-
tionships. Primary keys and foreign keys are explicitly defined.

Figure 7.1 Conceptual data model diagram for the ER model
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Figure 7.2 Conceptual data model diagram for UML

Table 7.2 Results of the Analysis of the Conceptual Data Model

ER Construct FDs

Customer(many): Job(one) cust-no -> job-title

Order(many): Customer(one) order-no -> cust-no

Salesperson(many): Department(one) sales-id -> dept-no

Item(many): Department(one) item-no -> dept-no

Order(many): Item(many):
Salesperson(one)

order-no,item-no->sales-id

Order(many): Department(many):
Salesperson(one)

order-no,dept-no-> sales-id

Customer

SalespersonOrder
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order-dept-sales

Item
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create table customer 
(cust_no   char(6),
job_title  varchar(256),
primary key (cust_no),
foreign key (job_title) references job

on delete set null on update cascade);

create table job 
(job_no char(6),
job_title   varchar(256),
primary key (job_no));

create table order 
(order_no  char(9),
cust_no   char(6) not null,
primary key (order_no),
foreign key (cust_no) references customer

on delete set null on update cascade);

create table salesperson
(sales_id char(10) 
sales_name varchar(256),
dept_no  char(2),
primary key (sales_id),
foreign key (dept_no) references department

on delete set null on update cascade);

create table department 
(dept_no char(2),
dept_name varchar(256),
manager_name varchar(256),
primary key (dept_no));

create table item 
(item_no char(6),
dept_no char(2),
primary key (item_no),
foreign key (dept_no) references department

on delete set null on update cascade);
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create table order_item_sales 
(order_no char(9),
item_no char(6),
sales_id varchar(256) not null,
primary key (order_no, item_no),
foreign key (order_no) references order

on delete cascade on update cascade,
foreign key (item_no) references item

on delete cascade on update cascade,
foreign key (sales_id) references salesperson

on delete cascade on update cascade);

create table order_dept_sales 
(order_no char(9),
dept_no char(2),
sales_id varchar(256) not null,
primary key (order_no, dept_no),
foreign key (order_no) references order 

on delete cascade on update cascade,
foreign key (dept_no) references department

on delete cascade on update cascade,
foreign key (sales_id) references salesperson

on delete cascade on update cascade);

Note that it is often better to put foreign key definitions in separate
(alter) statements. This prevents the possibility of getting circular defini-
tions with very large schemas.

This process of decomposition and reduction of tables moves us
closer to a minimum set of normalized (BCNF) tables, as shown in Table
7.3.

The reductions shown in this section have decreased storage space
and update cost and have maintained the normalization of BCNF (and
thus 3NF). On the other hand, we have potentially higher retrieval
cost—given the transaction “list all job_titles,” for example—and have
increased the potential for loss of integrity because we have eliminated
simple tables with only key attributes. Resolution of these trade-offs
depends on your priorities for your database.

The details of indexing will be covered in the companion book, Phys-
ical Database Design. However, during the logical design phase of defin-
ing SQL tables, it makes sense to start considering where to create
indexes. At a minimum, all primary keys and all foreign keys should be
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indexed. Indexes are relatively easy to implement and store, and make a
significant difference in reducing the access time to stored data.

7.3 Summary

In this chapter, we developed a global conceptual schema and a set of
SQL tables for a relational database, given the requirements specification
for a retail store database. The example illustrates the database life cycle
steps of conceptual data modeling, global schema design, transforma-
tion to SQL tables, and normalization of those tables. It summarizes the
techniques presented in Chapters 1 through 6. 

Table 7.3 Decomposition and Reduction of Tables

Table Primary key Likely non-keys

customer cust_no job_title, cust_name, 
cust_address 

order order_no cust_no, item_no, 
date_of_purchase, price 

salesperson sales_id dept_no, sales_name, phone_no

item item_no dept_no, color, model_no 

order_item_sales order_no,item_no sales_id 

order_dept_sales order_no,dept_no sales_id

Teorey.book  Page 145  Saturday, July 16, 2005  12:57 PM



Teorey.book  Page 146  Saturday, July 16, 2005  12:57 PM



147

8Business Intelligence

Business intelligence has become a buzzword in recent years. The data-
base tools found under the heading of business intelligence include data
warehousing, online analytical processing (OLAP), and data mining. The
functionalities of these tools are complementary and interrelated. Data
warehousing provides for the efficient storage, maintenance, and retrieval
of historical data. OLAP is a service that provides quick answers to ad hoc
queries against the data warehouse. Data mining algorithms find patterns
in the data and report models back to the user. All three tools are related
to the way data in a data warehouse are logically organized, and perfor-
mance is highly sensitive to the database design techniques used [Bar-
quin and Edelstein, 1997]. The encompassing goal for business intelli-
gence technologies is to provide useful information for decision support.

Each of the major DBMS vendors is marketing the tools for data
warehousing, OLAP, and data mining as business intelligence. This chap-
ter covers each of these technologies in turn. We take a close look at the
requirements for a data warehouse; its basic components and principles
of operation; the critical issues in its design; and the important logical
database design elements in its environment. We then investigate the
basic elements of OLAP and data mining as special query techniques
applied to data warehousing. We cover data warehousing in Section 8.1,
OLAP in Section 8.2, and data mining in Section 8.3.
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8.1 Data Warehousing

A data warehouse is a large repository of historical data that can be inte-
grated for decision support. The use of a data warehouse is markedly dif-
ferent from the use of operational systems. Operational systems contain
the data required for the day-to-day operations of an organization. This
operational data tends to change quickly and constantly. The table sizes
in operational systems are kept manageably small by periodically purg-
ing old data. The data warehouse, by contrast, periodically receives his-
torical data in batches, and grows over time. The vast size of data ware-
houses can run to hundreds of gigabytes, or even terabytes. The problem
that drives data warehouse design is the need for quick results to queries
posed against huge amounts of data. The contrasting aspects of data
warehouses and operational systems result in a distinctive design
approach for data warehousing.

8.1.1 Overview of Data Warehousing

A data warehouse contains a collection of tools for decision support
associated with very large historical databases, which enables the end
user to make quick and sound decisions. Data warehousing grew out of
the technology for decision support systems (DSS) and executive infor-
mation systems (EIS). DSSs are used to analyze data from commonly
available databases with multiple sources, and to create reports. The
report data is not time critical in the sense that a real-time system is, but
it must be timely for decision making. EISs are like DSSs, but more pow-
erful, easier to use, and more business specific. EISs were designed to pro-
vide an alternative to the classical online transaction processing (OLTP)
systems common to most commercially available database systems.
OLTP systems are often used to create common applications, including
those with mission-critical deadlines or response times. Table 8.1 sum-
marizes the basic differences between OLTP and data warehouse systems.

The basic architecture for a data warehouse environment is shown in
Figure 8.1. The diagram shows that the data warehouse is stocked by a
variety of source databases from possibly different geographical loca-
tions. Each source database serves its own applications, and the data
warehouse serves a DSS/EIS with its informational requests. Each feeder
system database must be reconciled with the data warehouse data
model; this is accomplished during the process of extracting the
required data from the feeder database system, transforming the data
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from the feeder system to the data warehouse, and loading the data into
the data warehouse [Cataldo, 1997].

Core Requirements for Data Warehousing

Let us now take a look at the core requirements and principles that guide
the design of data warehouses (DWs) [Simon, 1995; Barquin and Edel-
stein, 1997; Chaudhuri and Dayal, 1997; Gray and Watson, 1998]:

1. DWs are organized around subject areas. Subject areas are analo-
gous to the concept of functional areas, such as sales, project
management, or employees, as discussed in the context of ER dia-
gram clustering in Section 4.5. Each subject area has its own con-
ceptual schema and can be represented using one or more entities
in the ER data model or by one or more object classes in the
object-oriented data model. Subject areas are typically indepen-
dent of individual transactions involving data creation or manip-
ulation. Metadata repositories are needed to describe source
databases, DW objects, and ways of transforming data from the
sources to the DW.

2. DWs should have some integration capability. A common data
representation should be designed so that all the different indi-
vidual representations can be mapped to it. This is particularly

Table 8.1 Comparison between OLTP and Data Warehouse Databases

OLTP Data Warehouse

Transaction oriented Business process oriented

Thousands of users Few users (typically under 100)

Generally small (MB up to several GB) Large (from hundreds of GB to several TB)

Current data Historical data

Normalized data
(many tables, few columns per table)

Denormalized data
(few tables, many columns per table)

Continuous updates Batch updates*

Simple to complex queries Usually very complex queries

* There is currently a push in the industry towards “active warehousing,” in which the
warehouse receives data in continuous updates. See Section 8.2.5 for further discussion.
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useful if the warehouse is implemented as a multidatabase or fed-
erated database.

3. The data is considered to be nonvolatile and should be mass
loaded. Data extraction from current databases to the DW
requires that a decision should be made whether to extract the
data using standard relational database (RDB) techniques at the
row or column level or specialized techniques for mass extraction.
Data cleaning tools are required to maintain data quality—for
example, to detect missing data, inconsistent data, homonyms,
synonyms, and data with different units. Data migration, data
scrubbing, and data auditing tools handle specialized problems in
data cleaning and transformation. Such tools are similar to those
used for conventional relational database schema (view) integra-
tion. Load utilities take cleaned data and load it into the DW,
using batch processing techniques. Refresh techniques propagate
updates on the source data to base data and derived data in the
DW. The decision of when and how to refresh is made by the DW

Figure 8.1 Basic data warehouse architecture
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administrator and depends on user needs (e.g., OLAP needs) and
existing traffic to the DW.

4. Data tends to exist at multiple levels of granularity. Most impor-
tant, the data tends to be of a historical nature, with potentially
high time variance. In general, however, granularity can vary
according to many different dimensions, not only by time frame
but also by geographic region, type of product manufactured or
sold, type of store, and so on. The sheer size of the databases is a
major problem in the design and implementation of DWs, espe-
cially for certain queries, updates, and sequential backups. This
necessitates a critical decision between using a relational database
(RDB) or a multidimensional database (MDD) for the implemen-
tation of a DW.

5. The DW should be flexible enough to meet changing require-
ments rapidly. Data definitions (schemas) must be broad enough
to anticipate the addition of new types of data. For rapidly chang-
ing data retrieval requirements, the types of data and levels of
granularity actually implemented must be chosen carefully.

6. The DW should have a capability for rewriting history, that is,
allowing for “what-if” analysis. The DW should allow the admin-
istrator to update historical data temporarily for the purpose of
“what-if” analysis. Once the analysis is completed, the data must
be correctly rolled back. This condition assumes that the data are
at the proper level of granularity in the first place.

7. A usable DW user interface should be selected. The leading
choices today are SQL, multidimensional views of relational data,
or a special-purpose user interface. The user interface language
must have tools for retrieving, formatting, and analyzing data.

8. Data should be either centralized or distributed physically. The
DW should have the capability to handle distributed data over a
network. This requirement will become more critical as the use of
DWs grows and the sources of data expand.

The Life Cycle of Data Warehouses

Entire books have been written about select portions of the data ware-
house life cycle. Our purpose in this section is to present some of the
basics and give the flavor of data warehousing. We strongly encourage
those who wish to pursue data warehousing to continue learning
through other books dedicated to data warehousing. Kimball and Ross
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[1998, 2002] have a series of excellent books covering the details of data
warehousing activities.

Figure 8.2 outlines the activities of the data warehouse life cycle,
based heavily on Kimball and Ross’s Figure 16.1 [2002]. The life cycle
begins with a dialog to determine the project plan and the business
requirements. When the plan and the requirements are aligned, design
and implementation can proceed. The process forks into three threads
that follow independent timelines, meeting up before deployment (see
Figure 8.2). Platform issues are covered in one thread, including techni-
cal architectural design, followed by product selection and installation.
Data issues are covered in a second thread, including dimensional mod-
eling and then physical design, followed by data staging design and
development. The special analytical needs of the users are pursued in the
third thread, including analytic application specification followed by
analytic application development. These three threads join before
deployment. Deployment is followed by maintenance and growth, and
changes in the requirements must be detected. If adjustments are
needed, the cycle repeats. If the system becomes defunct, then the life
cycle terminates.

The remainder of our data warehouse section focuses on the dimen-
sional modeling activity. More comprehensive material can be found in
Kimball and Ross [1998, 2002] and Kimball and Caserta [2004].

8.1.2 Logical Design

We discuss the logical design of data warehouses in this section; the
physical design issues are covered in volume two. The logical design of
data warehouses is defined by the dimensional data modeling approach.
We cover the schema types typically encountered in dimensional model-
ing, including the star schema and the snowflake schema. We outline
the dimensional design process, adhering to the methodology described
by Kimball and Ross [2002]. Then we walk through an example, cover-
ing some of the crucial concepts of dimensional data modeling.

Dimensional Data Modeling

The dimensional modeling approach is quite different from the normaliza-
tion approach typically followed when designing a database for daily oper-
ations. The context of data warehousing compels a different approach to
meeting the needs of the user. The need for dimensional modeling will be
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Figure 8.2 Data warehouse life cycle (based heavily on Kimball and Ross [2002],
Figure 16.1)
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discussed further as we proceed. If you haven’t been exposed to data ware-
housing before, be prepared for some new paradigms.

The Star Schema

Data warehouses are commonly organized with one large central fact
table, and many smaller dimension tables. This configuration is termed a
star schema; an example is shown in Figure 8.3. The fact table is com-
posed of two types of attributes: dimension attributes and measures. The
dimension attributes in Figure 8.3 are CustID, ShipDateID, BindID, and
JobId. Most dimension attributes have foreign key/primary key relation-
ships with dimension tables. The dimension tables in Figure 8.3 are Cus-
tomer, Ship Calendar, and Bind Style. Occasionally, a dimension
attribute exists without a related dimension table. Kimball and Ross refer
to these as degenerate dimensions. The JobId attribute in Figure 8.3 is a
degenerate dimension (more on this shortly). We indicate the dimen-
sion attributes that act as foreign keys using the stereotype «fk». The pri-
mary keys of the dimension tables are indicated with the stereotype
«pk». Any degenerate dimensions in the fact table are indicated with the
stereotype «dd». The fact table also contains measures, which contain
values to be aggregated when queries group rows together. The measures
in Figure 8.3 are Cost and Sell.

Queries against the star schema typically use attributes in the dimen-
sion tables to select the pertinent rows from the fact table. For example,
the user may want to see cost and sell for all jobs where the Ship Month

Figure 8.3 Example of a star schema for a data warehouse

Ship Calendar

«pk» ShipDateID
Ship Date
Ship Month
Ship Quarter
Ship Year
Ship Day of Week

Fact Table

«fk» CustID
«fk» ShipDateID
«fk» BindID
«dd» JobID
Cost
Sell

Customer

«pk» CustID
Name
CustType
City
State Province
Country

Bind Style

«pk» BindID
Bind Desc
Bind Category

*

*

1

1

1
*
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is January 2005. The dimension table attributes are also typically used to
group the rows in useful ways when exploring summary information.
For example, the user may wish to see the total cost and sell for each
Ship Month in the Ship Year 2005. Notice that dimension tables can
allow different levels of detail the user can examine. For example, the
Figure 8.3 schema allows the fact table rows to be grouped by Ship Date,
Month, Quarter or Year. These dimension levels form a hierachy. There is
also a second hierarchy in the Ship Calendar dimension that allows the
user to group fact table rows by the day of the week. The user can move
up or down a hierarchy when exploring the data. Moving down a hierar-
chy to examine more detailed data is a drill-down operation. Moving up a
hierarchy to summarize details is a roll-up operation.

Together, the dimension attributes compose a candidate key of the
fact table. The level of detail defined by the dimension attributes is the
granularity of the fact table. When designing a fact table, the granularity
should be the most detailed level available that any user would wish to
examine. This requirement sometimes means that a degenerate dimen-
sion, such as JobId in Figure 8.3, must be included. The JobId in this star
schema is not used to select or group rows, so there is no related dimen-
sion table. The purpose of the JobId attribute is to distinguish rows at
the correct level of granularity. Without the JobId attribute, the fact
table would group together similar jobs, prohibiting the user from exam-
ining the cost and sell values of individual jobs.

Normalization is not the guiding principle in data warehouse design.
The purpose of data warehousing is to provide quick answers to queries
against a large set of historical data. Star schema organization facilitates
quick response to queries in the context of the data warehouse. The core
detailed data are centralized in the fact table. Dimensional information
and hierarchies are kept in dimension tables, a single join away from the
fact table. The hierarchical levels of data contained in the dimension
tables of Figure 8.3 violate 3NF, but these violations to the principles of
normalization are justified. The normalization process would break each
dimension table in Figure 8.3 into multiple tables. The resulting normal-
ized schema would require more join processing for most queries. The
dimension tables are small in comparison to the fact table, and typically
slow changing. The bulk of operations in the data warehouse are read
operations. The benefits of normalization are low when most operations
are read only. The benefits of minimizing join operations overwhelm the
benefits of normalization in the context of data warehousing. The
marked differences between the data warehouse environment and the

Teorey.book  Page 155  Saturday, July 16, 2005  12:57 PM



156 CHAPTER 8 Business Intelligence

operational system environment lead to distinct design approaches.
Dimensional modeling is the guiding principle in data warehouse
design.

Snowflake Schema

The data warehouse literature often refers to a variation of the star
schema known as the snowflake schema. Normalizing the dimension
tables in a star schema leads to a snowflake schema. Figure 8.4 shows the
snowflake schema analogous to the star schema of Figure 8.3. Notice
that each hierarchical level becomes its own table. The snowflake
schema is generally losing favor. Kimball and Ross strongly prefer the
star schema, due to its speed and simplicity. Not only does the star
schema yield quicker query response, it is also easier for the user to
understand when building queries. We include the snowflake schema
here for completeness.

Dimensional Design Process

We adhere to the four-step dimensional design process promoted by Kim-
ball and Ross. Figure 8.5 outlines the activities in the four-step process.

Dimensional Modeling Example

Congratulations, you are now the owner of the ACME Data Mart Com-
pany! Your company builds data warehouses. You consult with other
companies, design and deploy data warehouses to meet their needs, and
support them in their efforts.

Your first customer is XYZ Widget, Inc. XYZ Widget is a manufactur-
ing company with information systems in place. These are operational
systems that track the current and recent state of the various business
processes. Older records that are no longer needed for operating the
plant are purged. This keeps the operational systems running efficiently.

XYZ Widget is now ten years old, and growing fast. The management
realizes that information is valuable. The CIO has been saving data
before they are purged from the operational system. There are tens of
millions of historical records, but there is no easy way to access the data
in a meaningful way. ACME Data Mart has been called in to design and
build a DSS to access the historical data.

Discussions with XYZ Widget commence. There are many questions
they want to have answered by analyzing the historical data. You begin
by making a list of what XYZ wants to know.
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Figure 8.4 Example of a snowflake schema for a data warehouse

Figure 8.5 Four step dimensional design process [Kimball and Ross, 2002]

Fact TableShip Date

Bind Style

Customer

Ship Day of Week

Ship Month

Ship Quarter

Ship Year

Bind Category

City

State Province

Country

Cust Type

Select a Business Process

Choose Dimensions

Identify Measures

Determine Granularity

[more business processes] [else]
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XYZ Widget Company Wish List

1. What are the trends of our various products in terms of sales dol-
lars, unit volume, and profit margin?

2. For those products that are not profitable, can we drill down and
determine why they are not profitable?

3. How accurately do our estimated costs match our actual costs?

4. When we change our estimating calculations, how are sales and
profitability affected?

5. What are the trends in the percentage of jobs that ship on time?

6. What are the trends in productivity by department, for each
machine, and for each employee?

7. What are the trends in meeting the scheduled dates for each
department, and for each machine?

8. How effective was the upgrade on machine 123?

9. Which customers bring the most profitable jobs?

10. How do our promotional bulk discounts affect sales and profit-
ability?

Looking over the wish list, you begin picking out the business pro-
cesses involved. The following list is sufficient to satisfy the items on the
wish list.

Business Processes

1. Estimating

2. Scheduling

3. Productivity Tracking

4. Job Costing

These four business processes are interlinked in the XYZ Widget Com-
pany. Let’s briefly walk through the business processes and the organiza-
tion of information in the operational systems, so we have an idea what
information is available for analysis. For each business process, we’ll
design a star schema for storing the data.

The estimating process begins by entering widget specifications. The
type of widget determines which machines are used to manufacture the
widget. The estimating software then calculates estimated time on each
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machine used to produce that particular type of widget. Each machine is
modeled with a standard setup time and running speed. If a particular
type of widget is difficult to process on a particular machine, the times
are adjusted accordingly. Each machine has an hourly rate. The esti-
mated time is multiplied by the rate to give labor cost. Each estimate
stores widget specifications, a breakdown of the manufacturing costs,
the markup and discount applied (if any), and the price. The quote is
sent to the customer. If the customer accepts the quote, then the quote
is associated with a job number, the specifications are printed as a job
ticket, and the job ticket moves to scheduling.

We need to determine the grain before designing a schema for the
estimating data mart. The grain should be at the most detailed level, giv-
ing the greatest flexibility for drill-down operations when users are
exploring the data. The most granular level in the estimating process is
the estimating detail. Each estimating detail record specifies information
for an individual cost center for a given estimate. This is the finest gran-
ularity of estimating data in the operational system, and this level of
detail is also potentially valuable for the data warehouse users.

The next design step is to determine the dimensions. Looking at the
estimating detail, we see that the associated attributes are the job specifi-
cations, the estimate number and date, the job number and win date if
the estimate becomes a job, the customer, the promotion, the cost cen-
ter, the widget quantity, estimated hours, hourly rate, estimated cost,
markup, discount, and price. Dimensions are those attributes that the
users want to group by when exploring the data. The users are interested
in grouping by the various job specifications and by the cost center. The
users also need to be able to group by date ranges. The estimate date and
the win date are both of interest. Grouping by customer and promotion
are also of interest to the users. These become the dimensions of the star
schema for the estimating process.

Next, we identify the measures. Measures are the columns that con-
tain values to be aggregated when rows are grouped together. The mea-
sures in the estimating process are estimated hours, hourly rate, esti-
mated cost, markup, discount, and price.

The star schema resulting from the analysis of the estimating process
is shown in Figure 8.6. There are five widget qualities of interest: shape,
color, texture, density, and size. For example, a given widget might be a
medium round red fuzzy fluffy widget. The estimate and job numbers
are included as degenerate dimensions. The rest of the dimensions and
measures are as outlined in the previous two paragraphs.
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Dimension values are categorical in nature. For example, a given
widget might have a density of fluffy or heavy. The values for the size
dimension include small, medium, and large. Measures tend to be
numeric, since they are typically aggregated using functions such as sum
or average.

The dimension tables should include any hierarchies that may be
useful for analysis. For example, widgets are offered in many colors. The
colors fall into categories by hue (e.g., pink, blue) and intensity (e.g.,
pastel, hot). Some even glow in the dark! The user may wish to examine
all the pastel widgets as a group, or compare pink versus blue widgets.
Including these attributes in the dimension table as shown in Figure 8.7
can accommodate this need. 

Figure 8.6 Star schema for estimating process

Figure 8.7 Color dimension showing attributes

«fk» shape id
«fk» color id
«fk» texture id
«fk» density id
«fk» size id
«fk» estimate date id
«dd» estimate number
«fk» win date id
«dd» job number
«fk» customer id
«fk» promotion id
«fk» cost center id
widget quantity
estimated hours
hourly rate
estimated cost
markup
discount
price

Estimating DetailShape Color

Texture Density

Size Estimate Date

Customer

Promotion Cost Center

Win Date

Color

«pk» color id
color description
hue
intensity
glows in dark
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Dates can also form hierarchies. For example, the user may wish to
group by month, quarter, year or the day of the week. Date dimensions
are very common. The estimating process has two date dimensions: the
estimate date and the win date. Typically, the date dimensions have
analogous attributes. There is an advantage in standardizing the date
dimensions across the company. Kimball and Ross [2002] recommend
establishing a single standard date dimension, and then creating views
of the date dimension for use in multiple dimensions. The use of views
provides for standardization, while at the same time allowing the
attributes to be named with aliases for intuitive use when multiple date
dimensions are present. Figure 8.8 illustrates this concept with a date
dimension and two views named Estimate Date and Win Date.

Let’s move on to the scheduling process. Scheduling uses the times
calculated by the estimating process to plan the workload on each
required machine. Target dates are assigned to each manufacturing step.
The job ticket moves into production after the scheduling process com-
pletes.

XYZ Widget, Inc. has a shop floor automatic data collection (ADC)
system. Each job ticket has a bar code for the assigned job number. Each
machine has a sheet with bar codes representing the various operations
of that machine. Each employee has a badge with a bar code represent-
ing that employee. When an employee starts an operation, the job bar
code is scanned, the operation bar code is scanned, and the employee
bar code is scanned. The computer pulls in the current system time as
the start time. When one operation starts, the previous operation for
that employee is automatically stopped (an employee is unable do more
than one operation at once). When the work on the widget job is com-
plete on that machine, the employee marks the job complete via the
ADC system. The information gathered through the ADC system is used
to update scheduling, track the employee’s work hours and productivity,
and also track the machine’s productivity.

Figure 8.8 Date dimensions showing attributes

Date

«pk» date id
date description
month
quarter
year
day of week

Win Date

«pk» win date id
win date description
win month
win quarter
win year
win day of week

Estimate Date

«pk» estimate date id
estimate date description
estimate month
estimate quarter
estimate year
estimate day of week
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The design of a star schema for the scheduling process begins by
determining the granularity. The most detailed scheduling table in the
operational system has a record for each cost center applicable to manu-
facturing each job. The users in the scheduling department are inter-
ested in drilling down to this level of detail in the data warehouse. The
proper level of granularity in the star schema for scheduling is deter-
mined by the job number and the cost center.

Next we determine the dimensions in the star schema for the sched-
uling process. The operational scheduling system tracks the scheduled
start and finish date and times, as well as the actual start and finish date
and times. The estimated and actual hours are also stored in the opera-
tional scheduling details table, along with a flag indicating whether the
operation completed on time. The scheduling team must have the abil-
ity to group records by the scheduled and actual start and finish times.
Also critical is the ability to group by cost center. The dimensions of the
star schema for scheduling are the scheduled and actual start and finish
date and times, and the cost center. The job number must also be
included as a degenerate dimension to maintain the proper granularity
in the fact table. Figure 8.9 reflects the decisions on the dimensions
appropriate for the scheduling process.

The scheduling team is interested in aggregating the estimated hours
and, also, the actual hours. They are also very interested in examining
trends in on-time performance. The appropriate measures for the sched-
uling star schema include the estimated and actual hours and a flag indi-
cating whether the operation was finished on time. The appropriate
measures for scheduling are reflected in Figure 8.9.

Figure 8.9 Star schema for the scheduling process

«dd» job number
«fk» cost center id
«fk» sched start date id
«fk» sched start time id
«fk» sched finish date id
«fk» sched finish time id
«fk» actual start date id
«fk» actual start time id
«fk» actual finish date id
«fk» actual finish time id
finished on time
estimated hours
actual hours

Scheduling DetailCost Center

Sched Start Date

Actual Start Date
Sched Start Time

Actual Start Time

Actual Finish Date
Sched Finish Time

Actual Finish Time

Sched Finish Date
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There are several standardization principles in play in Figure 8.9.
Note that there are multiple time dimensions. These should be standard-
ized with a single time dimension, along with views filling the different
roles, similar to the approach used for the date dimensions. Also, notice
the Cost Center dimension is present both in the estimating and the
scheduling processes. These are actually the same, and should be
designed as a single dimension. Dimensions can be shared between mul-
tiple star schemas. One last point: the estimated hours are carried from
estimating into scheduling in the operational systems. These numbers
feed into the star schemas for both the estimating and the scheduling
processes. The meaning is the same between the two attributes; there-
fore, they are both named “estimated hours.” The rule of thumb is that
if two attributes carry the same meaning, they should be named the
same, and if two attributes are named the same, they carry the same
meaning. This consistency allows discussion and comparison of infor-
mation between business processes across the company.

The next process we examine is productivity tracking. The granular-
ity is determined by the level of detail available in the ADC system. The
detail includes the job number, cost center, employee number, and the
start and finish date and time. The department managers need to be able
to group rows by cost center, employee, and start and finish date and
times. These attributes therefore become the dimensions of the star
schema for the productivity process, shown in Figure 8.10. The manag-
ers are interested in aggregating productivity numbers, including the
widget quantity produced, the percentage finished on time and the esti-
mated and actual hours. Since these attributes are to be aggregated, they
become the measures shown in Figure 8.10.

Figure 8.10 Star schema for the productivity tracking process

«dd» job number
«fk» cost center id
«fk» employee id
«fk» actual start date id
«fk» actual start time id
«fk» actual finish date id
«fk» actual finish time id
widget quantity
finished on time
estimated hours
actual hours

Productivity DetailCost Center

Employee Actual Start Date

Actual Start Time

Actual Finish Date

Actual Finish Time

Teorey.book  Page 163  Saturday, July 16, 2005  12:57 PM



164 CHAPTER 8 Business Intelligence

There are often dimensions in common between star schemas in a
data warehouse, because business processes are usually interlinked. A
useful tool for tracking the commonality and differences of dimensions
across multiple business processes is the data warehouse bus [Kimball
and Ross, 2002]. Table 8.2 shows a data warehouse bus for the four busi-
ness processes in our dimensional design example. Each row represents a
business process. Each column represents a dimension. Each X in the
body of the table represents the use of the given dimension in the given
business process. The data warehouse bus is a handy means of present-
ing the organization of a data warehouse at a high level. The dimensions
common between multiple business processes need to be standardized
or “conformed” in Kimball and Ross’s terminology. A dimension is con-
formed if there exists a most detailed version of that dimension, and all
other uses of that dimension utilize a subset of the attributes and a sub-
set of the rows from that most detailed version. Conforming dimensions
ensures that whenever data are related or compared across business pro-
cesses, the result is meaningful.

The data warehouse bus also makes some design decisions more
obvious. We have taken the liberty of choosing the dimensions for the
job-costing process. Table 8.2 includes a row for the job-costing process.
When you compare the rows for estimating and job costing, it quickly
becomes clear that the two processes have most of the same dimensions.
It probably makes sense to combine these two processes into one star

Table 8.2 Data Warehouse Bus for Widget Example
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schema. This is especially true since job-costing analysis requires com-
paring estimated and actual values. Figure 8.11 is the result of combin-
ing the estimating and job costing processes into one star schema.

Summarizing Data

The star schemas we have covered so far are excellent for capturing the
pertinent details. Having fine granularity available in the fact table
allows the users to examine data down to that level of granularity. How-
ever, the users will often want summaries. For example, the managers
may often query for a daily snapshot of the job-costing data. Every
query the user may wish to pose against a given star schema can be
answered from the detailed fact table. The summary could be aggregated
on the fly from the fact table. There is an obvious drawback to this strat-
egy. The fact table contains many millions of rows, due to the detailed
nature of the data. Producing a summary on the fly can be expensive in
terms of computer resources, resulting in a very slow response. If a sum-
mary table were available to answer the queries for the job costing daily
snapshot, then the answer could be presented to the user blazingly fast.

Figure 8.11 Star schema for the job costing process

«fk» shape id
«fk» color id
«fk» texture id
«fk» density id
«fk» size id
«fk» estimate date id
«dd» estimate number
«fk» win date id
«dd» job number
«fk» customer id
«fk» promotion id
«fk» cost center id
«fk» invoice date id
widget quantity
estimated hours
hourly rate
estimated cost
markup
discount
price
actual hours
actual cost

Job Costing DetailShape Color

Texture Density

Size Estimate Date

Customer

Promotion Cost Center

Win Date

Invoice Date
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The schema for the job costing daily snapshot is shown in Figure 8.12.
Notice that most of the dimensions used in the job-costing detail are not
used in the snapshot. Summarizing the data has eliminated the need for
most dimensions in this context. The daily snapshot contains one row
for each day that jobs have been invoiced. The number of rows in the
snapshot would be in the thousands. The small size of the snapshot
allows very quick response when a user requests the job costing daily
snapshot. When there are a small number of summary queries that
occur frequently, it is a good strategy to materialize the summary data
needed to answer the queries quickly.

The daily snapshot schema in Figure 8.12 also allows the user to
group by month, quarter, or year. Materializing summary data is useful
for quick response to any query that can be answered by aggregating the
data further.

8.2 Online Analytical Processing (OLAP)

Designing and implementing strategic summary tables is a good
approach when there is a small set of frequent queries for summary data.
However, there may be a need for some users to explore the data in an ad
hoc fashion. For example, a user who is looking for types of jobs that
have not been profitable needs to be able to roll up and drill down vari-
ous dimensions of the data. The ad hoc nature of the process makes pre-
dicting the queries impossible. Designing a strategic set of summary
tables to answer these ad hoc explorations of the data is a daunting task.
OLAP provides an alternative. OLAP is a service that overlays the data
warehouse. The OLAP system automatically selects a strategic set of sum-
mary views, and saves the automatic summary tables (AST) to disk as
materialized views. The OLAP system also maintains these views, keep-

Figure 8.12 Schema for the job costing daily snapshot

«fk» invoice date id
widget quantity
estimated hours
estimated cost
price
actual hours
actual cost

Job Costing Daily Snapshot

Invoice Date
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ing them in step with the fact tables as new data arrives. When a user
requests summary data, the OLAP system figures out which AST can be
used for a quick response to the given query. OLAP systems are a good
solution when there is a need for ad hoc exploration of summary infor-
mation based on large amounts of data residing in a data warehouse.

OLAP systems automatically select, maintain, and use the ASTs.
Thus, an OLAP system effectively does some of the design work auto-
matically. This section covers some of the issues that arise in building an
OLAP engine, and some of the possible solutions. If you use an OLAP
system, the vendor delivers the OLAP engine to you. The issues and solu-
tions discussed here are not items that you need to resolve. Our goal
here is to remove some of the mystery about what an OLAP system is
and how it works.

8.2.1 The Exponential Explosion of Views

Materialized views aggregated from a fact table can be uniquely identi-
fied by the aggregation level for each dimension. Given a hierarchy
along a dimension, let 0 represent no aggregation, 1 represent the first
level of aggregation, and so on. For example, if the Invoice Date dimen-
sion has a hierarchy consisting of date id, month, quarter, year and “all”
(i.e., complete aggregation), then date id is level 0, month is level 1,
quarter is level 2, year is level 3, and “all” is level 4. If a dimension does
not explicitly have a hierarchy, then level 0 is no aggregation, and level
1 is “all.” The scales so defined along each dimension define a coordi-
nate system for uniquely identifying each view in a product graph. Fig-
ure 8.13 illustrates a product graph in two dimensions. Product graphs
are a generalization of the hypercube lattice structure introduced by
Harinarayan, Rajaraman, and Ullman [1996], where dimensions may
have associated hierarchies. The top node, labeled (0, 0) in Figure 8.13,
represents the fact table. Each node represents a view with aggregation
levels as indicated by the coordinate. The relationships descending the
product graph indicate aggregation relationships. The five shaded nodes
indicate that these views have been materialized. A view can be aggre-
gated from any materialized ancestor view. For example, if a user issues a
query for rows grouped by year and state, that query would naturally be
answered by the view labeled (3, 2). View (3, 2) is not materialized, but
the query can be answered from the materialized view (2, 1) since (2, 1)
is an ancestor of (3, 2). Quarters can be aggregated into years, and cities
can be aggregated into states.
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The central issue challenging the design of OLAP systems is the
exponential explosion of possible views as the number of dimensions
increases. The Calendar dimension in Figure 8.13 has five levels of hier-
archy, and the Customer dimension has four levels of hierarchy. The
user may choose any level of aggregation along each dimension. The
number of possible views is the product of the number of hierarchical
levels along each dimension. The number of possible views for the
example in Figure 8.13 is 5 × 4 = 20. Let d be the number of dimensions
in a data warehouse. Let hi be the number of hierarchical levels in
dimension i. The general equation for calculating the number of possi-
ble views is given by Equation 8.1.

Possible views = 8.1

If we express Equation 8.1 in different terms, the problem of expo-
nential explosion becomes more apparent. Let g be the geometric mean

Figure 8.13 Product graph labeled with aggregation level coordinates

Calendar Dimension
(first dimension)

0: date id
1: month
2: quarter
3: year
4: all

Customer Dimension
(second dimension)
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1: city
2: state
3: all
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of the number of hierarchical levels in the dimensions. Then Equation
8.1 becomes Equation 8.2.

Possible views = gd 8.2

As dimensionality increases linearly, the number of possible views
explodes exponentially. If g = 5 and d = 5, there are 55 = 3,125 possible
views. Thus if d = 10, then there are 510 = 9,765,625 possible views.
OLAP administrators need the freedom to scale up the dimensionality of
their data warehouses. Clearly the OLAP system cannot create and main-
tain all possible views as dimensionality increases. The design of OLAP
systems must deliver quick response while maintaining a system within
the resource limitations. Typically, a strategic subset of views must be
selected for materialization.

8.2.2 Overview of OLAP

There are many approaches to implementing OLAP systems presented in
the literature. Figure 8.14 maps out one possible approach, which will
serve for discussion. The larger problem of OLAP optimization is broken
into four subproblems: view size estimation, materialized view selection,
materialized view maintenance, and query optimization with material-
ized views. This division is generally true of the OLAP literature, and is
reflected in the OLAP system plan shown in Figure 8.14.

We describe how the OLAP processes interact in Figure 8.14, and
then explore each process in greater detail. The plan for OLAP optimiza-
tion shows Sample Data moving from the Fact Table into View Size Esti-
mation. View Selection makes an Estimate Request for the view size of each
view it considers for materialization. View Size Estimation queries the
Sample Data, examines it, and models the distribution. The distribution
observed in the sample is used to estimate the expected number of rows
in the view for the full dataset. The Estimated View Size is passed to View
Selection, which uses the estimates to evaluate the relative benefits of
materializing the various views under consideration. View Selection picks
Strategically Selected Views for materialization with the goal of minimiz-
ing total query costs. View Maintenance builds the original views from
the Initial Data from the Fact Table, and maintains the views as Incremen-
tal Data arrives from Updates. View Maintenance sends statistics on View
Costs back to View Selection, allowing costly views to be discarded
dynamically. View Maintenance offers Current Views for use by Query Opti-
mization. Query Optimization must consider which of the Current Views

Teorey.book  Page 169  Saturday, July 16, 2005  12:57 PM



170 CHAPTER 8 Business Intelligence

can be utilized to most efficiently answer Queries from Users, giving
Quick Responses to the Users. View Usage feeds back into View Selection,
allowing the system to dynamically adapt to changes in query work-
loads.

8.2.3 View Size Estimation

OLAP systems selectively materialize strategic views with high benefits
to achieve quick response to queries, while remaining within the
resource limits of the computer system. The size of a view affects how
much disk space is required to store the view. More importantly, the size
of the view determines in part how much disk input/output will be con-
sumed when querying and maintaining the view. Calculating the exact
size of a given view requires calculating the view from the base data.
Reading the base data and calculating the view is the majority of the
work necessary to materialize the view. Since the objective of view mate-
rialization is to conserve resources, it becomes necessary to estimate the
size of the views under consideration for materialization.

Cardenas’ formula [Cardenas, 1975] is a simple equation (Equation
8.3) that is applicable to estimating the number of rows in a view:

Figure 8.14 A plan for OLAP optimization
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Let n be the number of rows in the fact table.

Let v be the number of possible keys in the data space of the view.

Expected distinct values = v(1 – (1 – 1/v)n) 8.3

Cardenas’ formula assumes a uniform data distribution. However,
many data distributions exist. The data distribution in the fact table
affects the number of rows in a view. Cardenas’ formula is very quick,
but the assumption of a uniform data distribution leads to gross overesti-
mates of the view size when the data is actually clustered. Other meth-
ods have been developed to model the effect of data distribution on the
number of rows in a view.

Faloutsos, Matias, and Silberschatz [1996] present a sampling
approach based on the binomial multifractal distribution. Parameters of
the distribution are estimated from a sample. The number of rows in the
aggregated view for the full data set is then estimated using the parame-
ter values determined from the sample. Equations 8.4 and 8.5 [Faloutsos,
Matias, and Silberschatz, 1996] are presented for this purpose.

Expected distinct values = 8.4

Pa = Pk–a(1 – P)a 8.5

Figure 8.15 illustrates an example. Order k is the decision tree depth.
Ck

a is the number of bins in the set reachable by taking some combina-
tion of a left hand edges and k – a right hand edges in the decision tree.
Pa is the probability of reaching a given bin whose path contains a left
hand edges. n is the number of rows in the data set. Bias P is the proba-
bility of selecting the right hand edge at a choice point in the tree.

The calculations of Equation 8.4 are illustrated with a small example.
An actual database would yield much larger numbers, but the concepts
and the equations are the same. These calculations can be done with log-
arithms, resulting in very good scalability. Based on Figure 8.15, given
five rows, calculate the expected distinct values using Equation 8.4:

Expected distinct values =

1 ⋅ (1 – (1 – 0.729)5) + 3 ⋅ (1 – (1 – 0.081)5) +

3 ⋅ (1 – (1 – 0.009)5) + 1 ⋅ (1 – (1 – 0.001)5) ≈1.965 8.6

Ca
k 1 1 Pa–( )n

–( )
a 0=

k

∑
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The values of P and k can be estimated based on sample data. The
algorithm used in [Faloutsos, Matias, and Silberschatz, 1996] has three
inputs: the number of rows in the sample, the frequency of the most
commonly occurring value, and the number of distinct aggregate rows
in the sample. The value of P is calculated based on the frequency of the
most commonly occurring value. They begin with:

k = ⎡Log2(Distinct rows in sample)⎤ 8.7

and then adjust k upwards, recalculating P until a good fit to the number
of distinct rows in the sample is found.

Other distribution models can be utilized to predict the size of a view
based on sample data. For example, the use of the Pareto distribution
model has been explored [Nadeau and Teorey, 2003]. Another possibility
is to find the best fit to the sample data for multiple distribution models,
calculate which model is most likely to produce the given sample data,
and then use that model to predict the number of rows for the full data
set. This would require calculation for each distribution model consid-
ered, but should generally result in more accurate estimates.

Figure 8.15 Example of a binomial multifractal distribution tree
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8.2.4 Selection of Materialized Views

Most of the published works on the problem of materialized view selec-
tion are based on the hypercube lattice structure [Harinarayan, Rajara-
man, and Ullman, 1996]. The hypercube lattice structure is a special case
of the product graph structure, where the number of hierarchical levels
for each dimension is two. Each dimension can either be included or
excluded from a given view. Thus, the nodes in a hypercube lattice struc-
ture represent the power set of the dimensions. 

Figure 8.16 illustrates the hypercube lattice structure with an exam-
ple [Harinarayan, Rajaraman, and Ullman, 1996]. Each node of the lat-
tice structure represents a possible view. Each node is labeled with the set
of dimensions in the “group by” list for that view. The numbers associ-
ated with the nodes represent the number of rows in the view. These
numbers are normally derived from a view size estimation algorithm, as
discussed in Section 8.2.3. However, the numbers in Figure 8.16 follow
the example as given by Harinarayan et al. [1996]. The relationships
between nodes indicate which views can be aggregated from other
views. A given view can be calculated from any materialized ancestor
view. 

We refer to the algorithm for selecting materialized views introduced
by Harinarayan et al. [1996] as HRU. The initial state for HRU has only
the fact table materialized. HRU calculates the benefit of each possible
view during each iteration, and selects the most beneficial view for
materialization. Processing continues until a predetermined number of
materialized views is reached. 

Figure 8.16 Example of a hypercube lattice structure [Harinarayan et al. 1996]

c = Customer
p = Part
s = Supplier

{p, s} 0.8M {c, s} 6M {c, p} 6M

{s} 0.01M {p} 0.2M {c} 0.1M

{ } 1

Fact Table

{c, p, s} 6M
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Table 8.3 shows the calculations for the first two iterations of HRU.
Materializing {p, s} saves 6M – 0.8M = 5.2M rows for each of four views:
{p, s} and its three descendants: {p}, {s}, and {}. The view {c, s} yields no
benefit materialized, since any query that can be answered by reading
6M rows from {c, s} can also be answered by reading 6M rows from the
fact table {c, p, s}. HRU calculates the benefits of each possible view mate-
rialization. The view {p, s} is selected for materialization in the first itera-
tion. The view {c} is selected in the second iteration.

HRU is a greedy algorithm that does not guarantee an optimal solu-
tion, although testing has shown that it usually produces a good solu-
tion. Further research has built upon HRU, accounting for the presence
of index structures, update costs, and query frequencies.

HRU evaluates every unselected node during each iteration, and
each evaluation considers the effect on every descendant. The algorithm
consumes O(kn2) time, where k = |views to select| and n = |nodes|. This
order of complexity looks very good; it is polynomial time. However, the
result is misleading. The nodes of the hypercube lattice structure consti-
tute a power set. The number of possible views is therefore 2d where d =
|dimensions|. Thus, n = 2d, and the time complexity of HRU is O(k22d).
HRU runs in time exponentially relative to the number of dimensions in
the database.

The Polynomial Greedy Algorithm (PGA) [Nadeau and Teorey, 2002]
offers a more scalable alternative to HRU. PGA, like HRU, also selects one
view for materialization with each iteration. However, PGA divides each
iteration into a nomination phase and a selection phase. The first phase
nominates promising views into a candidate set. The second phase esti-
mates the benefits of materializing each candidate, and selects the view
with the highest evaluation for materialization.

Table 8.3 Two Iterations of HRU, Based on Figure 8.16

Iteration 1 Benefit Iteration 2 Benefit

{p, s}

{c, s}

{c, p}

{s}

{p}

{c}

{}

5.2M × 4 = 20.8M

0 × 4 = 0

0 × 4 = 0

5.99M × 2 = 11.98M

5.8M × 2 = 11.6M

5.9M × 2 = 11.8M

6M – 1

0 × 2 = 0

0 × 2 = 0

0.79M × 2 = 1.58M

0.6M × 2 = 1.2M

5.9M × 2 = 11.8M

0.8M – 1
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The nomination phase begins at the top of the lattice; in Figure 8.16,
this is the node {c, p, s}. PGA nominates the smallest node from amongst
the children. The candidate set is now {{p, s}}. PGA then examines the
children of {p, s} and nominates the smallest child, {s}. The process
repeats until the bottom of the lattice is reached. The candidate set is
then {{p, s}, {s}, {}}. Once a path of candidate views has been nominated,
the algorithm enters the selection phase. The resulting calculations are
shown in Tables 8.4 and 8.5.

Compare Tables 8.4 and 8.5 with Table 8.3. Notice PGA does fewer
calculations than HRU, and yet in this example reaches the same deci-
sions as HRU. PGA usually picks a set of views nearly as beneficial as
those chosen by HRU, and yet PGA is able to function when HRU fails
due to the exponential complexity. PGA is polynomial relative to the
number of dimensions. When HRU fails, PGA extends the usefulness of
the OLAP system.

The materialized view selection algorithms discussed so far are static;
that is, the views are picked once and then materialized. An entirely dif-
ferent approach to the selection of materialized views is to treat the
problem similar to memory management [Kotidis and Roussopoulos,
1999]. The materialized views constitute a view pool. Metadata is tracked
on usage of the views. The system monitors both space and update win-
dow constraints. The contents of the view pool are adjusted dynami-
cally. As queries are posed, views are added appropriately. Whenever a
constraint is violated, the system selects a view for eviction. Thus the

Table 8.4 First Iteration of PGA, Based on Figure 8.16

Candidates Iteration 1 Benefit

{p, s}

{s}

{}

5.2M × 4 = 20.8M

5.99M × 2 = 11.98M

6M – 1

Table 8.5 Second Iteration of PGA, Based on Figure 8.16

Candidates Iteration 2 Benefit

{c, s}

{s}

{c}

{}

0 × 2 = 0

0.79M × 2 = 1.58M 

5.9M × 2 = 11.8M

6M – 1
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view pool can improve as more usage statistics are gathered. This is a
self-tuning system that adjusts to changing query patterns.

The static and dynamic approaches complement each other and
should be integrated. Static approaches run fast from the beginning, but
do not adapt. Dynamic view selection begins with an empty view pool,
and therefore yields slow response times when a data warehouse is first
loaded; however, it is adaptable and improves over time. The comple-
mentary nature of these two approaches has influenced our design plan
in Figure 8.14, as indicated by Queries feeding back into View Selection.

8.2.5 View Maintenance

Once a view is selected for materialization, it must be computed and
stored. When the base data is updated, the aggregated view must also be
updated to maintain consistency between views. The original view mate-
rialization and the incremental updates are both considered as view
maintenance in Figure 8.14. The efficiency of view maintenance is
greatly affected by the data structures implementing the view. OLAP sys-
tems are multidimensional, and fact tables contain large numbers of
rows. The access methods implementing the OLAP system must meet
the challenges of high dimensionality in combination with large row
counts. The physical structures used are deferred to volume two, which
covers physical design.

Most of the research papers in the area of view maintenance assume
that new data is periodically loaded with incremental data during desig-
nated update windows. Typically, the OLAP system is made unavailable
to the users while the incremental data is loaded in bulk, taking advan-
tage of the efficiencies of bulk operations. There is a down side to defer-
ring the loading of incremental data until the next update window. If
the data warehouse receives incremental data once a day, then there is a
one-day latency period.

There is currently a push in the industry to accommodate data
updates close to real time, keeping the data warehouse in step with the
operational systems. This is sometimes referred to as “active warehous-
ing” and “real-time analytics.” The need for data latency of only a few
minutes presents new problems. How can very large data structures be
maintained efficiently with a trickle feed? One solution is to have a sec-
ond set of data structures with the same schema as the data warehouse.
This second set of data structures acts as a holding tank for incremental
data, and is referred to as a delta cube in OLAP terminology. The opera-
tional systems feed into the delta cube, which is small and efficient for
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quick incremental changes. The data cube is updated periodically from
the delta cube, taking advantage of bulk operation efficiencies. When
the user queries the OLAP system, the query can be issued against both
the data cube and the delta cube to obtain an up-to-date result. The delta
cube is hidden from the user. What the user sees is an OLAP system that
is nearly current with the operational systems.

8.2.6 Query Optimization

When a query is posed to an OLAP system, there may be multiple mate-
rialized views available that could be used to compute the result. For
example, if we have the situation represented in Figure 8.13, and a user
issues a query to group rows by month and state, that query is naturally
answered from the view labeled (1, 2). However, since (1, 2) is not mate-
rialized, we need to find a materialized ancestor to obtain the data.
There are three such nodes in the product graph of Figure 8.13. The
query can be answered from nodes (0, 0), (1, 0), or (0, 2). With the possi-
bility of answering queries from alternative sources, the optimization
issue arises as to which source is the most efficient for the given query.
Most existing research focuses on syntactic approaches. The possible
query translations are carried out, alternative query costs are estimated,
and what appears to be the best plan is executed. Another approach is to
query a metadata table containing information on the materialized
views to determine the best view to query against, and then translate the
original SQL query to use the best view.

Database systems contain metadata tables that hold data about the
tables and other structures used by the system. The metadata tables facil-
itate the system in its operations. Here’s an example where a metadata

Table 8.6 Example of Materialized View Metadata

Dimensions

Calendar Customer Blocks ViewID

0 0 10,000,000 1

0 2 50,000 3

0 3 1,000 5

1 0 300,000 2

2 1 10,000 4
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table can facilitate the process of finding the best view to answer a query
in an OLAP system. The coordinate system defined by the aggregation
levels forms the basis for organizing the metadata for tracking the mate-
rialized views. Table 8.6 displays the metadata for the materialized views
shaded in Figure 8.13. The two dimensions labeled Calendar and Cus-
tomer form the composite key. The Blocks column tracks the actual num-
ber of blocks in each materialized view. The ViewID column is used to
identify the associated materialized view. The implementation stores
materialized views as tables where the value of the ViewID forms part of
the table name. For example, the row with ViewID = 3 contains informa-
tion on the aggregated view that is materialized as table AST3 (short for
automatic summary table 3).

Observe the general pattern in the coordinates of the views in the
product graph with regard to ancestor relationships. Let Value(V, d) rep-
resent a function that returns the aggregation level for view V along
dimension d. For any two views Vi and Vj where Vi ≠ Vj, Vi is an ancestor
of Vj if and only if for every dimension d of the composite key, Value(Vi,
d) ≤ Value(Vj, d). This pattern in the keys can be utilized to identify
ancestors of a given view by querying the metadata. The semantics of
the product graph are captured by the metadata, permitting the OLAP
system to search semantically for the best materialized ancestor view by
querying the metadata table. After the best materialized view is deter-
mined, the OLAP system can rewrite the original query to utilize the best
materialized view, and proceed.

8.3 Data Mining

Two general approaches are used to extract knowledge from a database.
First, a user may have a hypothesis to verify or disprove. This type of
analysis is done with standard database queries and statistical analysis.
The second approach to extracting knowledge is to have the computer
search for correlations in the data, and present promising hypotheses to
the user for consideration. The methods included here are data mining
techniques developed in the fields of Machine Learning and Knowledge
Discovery.

Data mining algorithms attempt to solve a number of common
problems. One general problem is categorization: given a set of cases
with known values for some parameters, classify the cases. For example,
given observations of patients, suggest a diagnosis. Another general
problem type is clustering: given a set of cases, find natural groupings of
the cases. Clustering is useful, for example, in identifying market seg-
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ments. Association rules, also known as market basket analyses, are
another common problem. Businesses sometimes want to know what
items are frequently purchased together. This knowledge is useful, for
example, when decisions are made about how to lay out a grocery store.
There are many types of data mining available. Han and Kamber [2001]
cover data mining in the context of data warehouses and OLAP systems.
Mitchell [1997] is a rich resource, written from the machine learning
perspective. Witten and Frank [2000] give a survey of data mining, along
with freeware written in Java available from the Weka Web site [http://
www.cs.waikato.ac.nz/ml/weka]. The Weka Web site is a good option for
those who wish to experiment with and modify existing algorithms. The
major database vendors also offer data mining packages that function
with their databases.

Due to the large scope of data mining, we focus on two forms of data
mining: forecasting and text mining.

8.3.1 Forecasting

Forecasting is a form of data mining in which trends are modeled over
time using known data, and future trends are predicted based on the
model. There are many different prediction models with varying levels
of sophistication. Perhaps the simplest model is the least squares line
model. The best fit line is calculated from known data points using the
method of least squares. The line is projected into the future to deter-
mine predictions. Figure 8.17 shows a least squares line for an actual
data set. The crossed (jagged) points represent actual known data. The
circular (dots) points represent the least squares line. When the least
squares line projects beyond the known points, this region represents
predictions. The intervals associated with the predictions in our figures
represent a 90% prediction interval. That is, given an interval, there is a
90% probability that the actual value, when known, will lie in that
interval.

The least squares line approach weights each known data point
equally when building the model. The predicted upward trend in Figure
8.17 does not give any special consideration to the recent downturn.

Exponential smoothing is an approach that weights recent history
more heavily than distant history. Double exponential smoothing mod-
els two components: level and trend (hence “double” exponential
smoothing). As the known values change in level and trend, the model
adapts. Figure 8.18 shows the predictions made using double exponen-
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tial smoothing, based on the same data set used to compute Figure 8.17.
Notice the prediction is now more tightly bound to recent history.

Triple exponential smoothing models three components: level,
trend, and seasonality. This is more sophisticated than double exponen-
tial smoothing, and gives better predictions when the data does indeed
exhibit seasonal behavior. Figure 8.19 shows the predictions made by tri-
ple exponential smoothing, based on the same data used to compute
Figures 8.17 and 8.18. Notice the prediction intervals are tighter than in
Figures 8.17 and 8.18. This is a sign that the data varies seasonally; triple
exponential smoothing is a good model for the given type of data.

Exactly how reliable are these predictions? If we revisit the predic-
tions after time has passed and compare the predictions with the actual
values, are they accurate? Figure 8.20 shows the actual data overlaid
with the predictions made in Figure 8.19. Most of the actual data points
do indeed lie within the prediction intervals. The prediction intervals
look very reasonable. Why don’t we use these forecast models to make
our millions on Wall Street? Take a look at Figure 8.21, a cautionary tale.
Figure 8.21 is also based on the triple exponential smoothing model,
using four years of known data for training, compared with five years of
data used in constructing the model for Figure 8.20. The resulting pre-

Figure 8.17 Least squares line (courtesy of Ubiquiti, Inc.)
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dictions match for four months, and then diverge greatly from reality.
The problem is that forecast models are built on known data, with the
assumption that known data forms a good basis for predicting the
future. This may be true most of the time; however, forecast models can
be unreliable when the market is changing or about to change drasti-
cally. Forecasting can be a useful tool, but the predictions must be taken
only as indicators.

The details of the forecast models discussed here, as well as many
others, can be found in Makridakis et al. [1998].

8.3.2 Text Mining

Most of the work on data processing over the past few decades has used
structured data. The vast majority of systems in use today read and store
data in relational databases. The schemas are organized neatly in rows
and columns. However, there are large amounts of data that reside in
freeform text. Descriptions of warranty claims are written in text. Medi-
cal records are written in text. Text is everywhere. Only recently has the
work in text analysis made significant headway. Companies are now
marketing products that focus on text analysis.

Figure 8.18 Double exponential smoothing (courtesy of Ubiquiti, Inc.)
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Figure 8.19 Triple exponential smoothing (courtesy of Ubiquiti, Inc.)

Figure 8.20 Triple exponential smoothing with actual values overlaying forecast val-
ues, based on five years of training data (courtesy of Ubiquiti, Inc.)
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Let’s look at a few of the possibilities for analyzing text and their
potential impact. We’ll take the area of automotive warranty claims as
an example. When something goes wrong with your car, you bring it
to an automotive shop for repairs. You describe to a shop representa-
tive what you’ve observed going wrong with your car. Your description
is typed into a computer. A mechanic works on your car, and then
types in observations about your car and the actions taken to remedy
the problem. This is valuable information for the automotive compa-
nies and the parts manufacturers. If the information can be analyzed,
they can catch problems early and build better cars. They can reduce
breakdowns, saving themselves money, and saving their customers
frustration.

The data typed into the computer is often entered in a hurry. The
language includes abbreviations, jargon, misspelled words, and incorrect
grammar. Figure 8.22 shows an example entry from an actual warranty
claim database.

As you can see, the raw information entered on the shop floor is
barely English. Figure 8.23 shows a cleaned up version of the same text.

Figure 8.21 Triple exponential smoothing with actual values overlaying forecast val-
ues, based on four years of training data (courtesy of Ubiquiti, Inc.)
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Even the cleaned up version is difficult to read. The companies pay-
ing out warranty claims want each claim categorized in various ways, to
track what problems are occurring. One option is to hire many people to
read the claims and determine how each claim should be categorized.
Categorizing the claims manually is tedious work. A more viable option,
developed in the last few years, is to apply a software solution. Figure
8.24 shows some of the information that can be gleaned automatically
from the text in Figure 8.22.

The software processes the text and determines the concepts likely
represented in the text. This is not a simple word search. Synonyms map

Figure 8.22 Example of a verbatim description in a warranty claim (courtesy of
Ubiquiti, Inc.)

Figure 8.23 Cleaned up version of description in warranty claim (courtesy of
Ubiquiti, Inc.)

Figure 8.24 Useful information extracted from verbatim description in warranty
claim (courtesy of Ubiquiti, Inc.)

7  DD40  BASC  54566  CK  OUT  AC  INOP  PREFORM  PID  CK  CK  PCM 
PID  ACC  CK  OK  OPERATING  ON  AND  OFF  PREFORM  POWER  AND 
GRONED  CK  AT   COMPRESOR  FONED  NO  GRONED  PREFORM  
PINPONT   DIAG   AND   TRACE   GRONED   FONED   BAD   CO   NECTION  
AT S778 REPAIR AND RETEST OK CK AC OPERATION

7 DD40 Basic 54566 Check Out Air Conditioning Inoperable Perform PID 
Check Check Power Control Module PID Accessory Check OK Operating 
On And Off Perform Power And Ground Check At Compressor Found No 
Ground Perform Pinpoint Diagnosis And Trace Ground Found Bad 
Connection At Splice 778 Repair And Retest OK Check Air Conditioning 
Operation.

Primary Group:  Electrical
Subgroup:  Climate Control
Part:  Connector 1008
Problem:  Bad Connection
Repair:  Reconnect
Location:  Engin. Cmprt.

90 %
85 %
93 %
72 %
75 %
90 %

Automated Coding Confidence
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to the same concept. Some words map to different concepts depending
on the context. The software uses an ontology that relates words and
concepts to each other. After each warranty is categorized in various
ways, it becomes possible to obtain useful aggregate information, as
shown in Figure 8.25.

8.4 Summary

Data warehousing, OLAP, and data mining are three areas of computer
science that are tightly interlinked and marketed under the heading of
business intelligence. The functionalities of these three areas comple-
ment each other. Data warehousing provides an infrastructure for stor-
ing and accessing large amounts of data in an efficient and user-friendly
manner. Dimensional data modeling is the approach best suited for
designing data warehouses. OLAP is a service that overlays the data
warehouse. The purpose of OLAP is to provide quick response to ad hoc
queries, typically involving grouping rows and aggregating values. Roll-
up and drill-down operations are typical. OLAP systems automatically
perform some design tasks, such as selecting which views to materialize
in order to provide quick response times. OLAP is a good tool for explor-
ing the data in a human-driven fashion, when the person has a clear
question in mind. Data mining is usually computer driven, involving
analysis of the data to create likely hypotheses that might be of interest
to users. Data mining can bring to the forefront valuable and interesting
structure in the data that would otherwise have gone unnoticed.

Figure 8.25 Aggregate data from warranty claims (courtesy of Ubiquiti, Inc.)
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8.5 Literature Summary

The evolution and principles of data warehouses can be found in Bar-
quin and Edelstein [1997], Cataldo [1997], Chaudhuri and Dayal [1997],
Gray and Watson [1998], Kimball and Ross [1998, 2002], and Kimball
and Caserta [2004]. OLAP is discussed in Barquin and Edelstein [1997],
Faloutsos, Matia, and Silberschatz [1996], Harinarayan, Rajaraman, and
Ullman [1996], Kotidis and Roussopoulos [1999], Nadeau and Teorey
[2002 2003], Thomsen [1997], and data mining principles and tools can
be found in Han and Kamber [2001], Makridakis, Wheelwright, and
Hyndman [1998], Mitchell [1997], The University of Waikato [2005],
Witten and Frank [2000], among many others.
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9CASE Tools for Logical 
Database Design

atabase design is just one part of the analysis and design phase of
creating effective business application software (see Figure 9.1), but

it is often the part that is the most challenging and the most critical to
performance. In the previous chapters, we explored the classic ways of
creating efficient and effective database designs, including ER modeling
and the transformation of the ER models into constructs by transforma-
tion rules. We also examined normalization, normal forms and denor-
malization, and specific topologies used in warehousing, such as star
schema. All this information may leave your head spinning! 

This chapter focuses on commercially available tools to simplify
these design processes. These computer-aided system engineering, or
CASE, tools provide functions that assist in system design. CASE tools
are widely used in numerous industries and domains, such as circuit
design, manufacturing, and architecture. Logical database design is
another area where CASE tools have proven effective. This chapter
explores the offerings of the major vendors in this space: IBM, Computer
Associates, and Sybase. Each of these companies offers powerful, feature-
rich technology for developing logical database designs and transition-
ing them into physical databases you can use. 

Although it is impossible to present information on software prod-
ucts without some subjectivity and comment, we have sincerely
attempted to discuss the capabilities of these products with minimal
product bias or critique. Also, it is impossible to describe the features of

D
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188 CHAPTER 9 CASE Tools for Logical Database Design

these products in great detail in a chapter of this sort (a user manual of
many hundred pages could be written describing each), so we have set
the bar slightly lower, with the aim of surveying these products to give
the reader a taste for the capabilities they provide. Further details can be
obtained from the manufacturer’s Web sites, which are listed in the Lit-
erature Summary at the end of the chapter. 

9.1 Introduction to the CASE Tools

In this chapter, we will introduce some of the most popular and power-
ful products available for helping with logical database design: IBM’s
Rational Data Architect, Computer Associate’s AllFusion ERwin Data
Modeler, and Sybase’s PowerDesigner. These CASE tools help the
designer develop a well-designed database by walking through a process
of conceptual design, logical design and physical creation, as shown in
Figure 9.2. 

Computer Associates’ AllFusion ERwin Data Modeler has been
around the longest. A stand-alone product, AllFusion ERwin’s strengths
stem from relatively strong support of physical data modeling, the

Figure 9.1 Business system life cycle (courtesy IBM Corp.)

Teorey.book  Page 188  Saturday, July 16, 2005  12:57 PM



9.1 Introduction to the CASE Tools 189

broadest set of technology partners, and third-party training. What it
does it does well, but in recent years it has lagged in some advanced fea-
tures. Sybase’s PowerDesigner has come on strong in the past few years,
challenging AllFusion ERwin. It has some advantages in reporting and
some advanced features that will be described later in this chapter. IBM’s
Rational Data Architect is a new product that supplants IBM’s previous
product, Rational Rose Data Modeler. Its strength lies in strong design
checking; rich integration with IBM’s broad software development plat-
form, including products from their Rational, Information Management,
and Tivoli divisions; and advanced features that will be described below. 

In previous chapters, we discussed the aspects of logical database
design that CASE tools help design, annotate, apply, and modify. These
include, for example, ER, and UML modeling, and how this modeling
can be used to develop a logical database design. Within the ER relation-
ship design, there are several types of entity definitions and relationship
modeling (unrelated, one-to-many, and many-to-many). These relation-
ships are combined and denormalized into schema patterns known as
normal forms (e.g., 3NF, star schema, snowflake schema). An effective
design requires the clear definition of keys, such as the primary key, the
foreign key, and unique keys within relationships. The addition of con-
straints to limit the usage (and abuses) of the system within reasonable
bounds or business rules is also critical. The effective logical design of

Figure 9.2 Database design process
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the database will have a profound impact on the performance of the sys-
tem, as well as the ease with which the database system can be main-
tained and extended.

There are several other CASE products that we will not discuss in this
book. A few additional products worth investigating include Data-
namic’s DeZign for Databases, QDesigner by Quest Software, Visible
Analyst by Standard, and Embarcadero ER/Studio. The Visual Studio
.NET Enterprise Architect edition includes a version of Visio with some
database design stencils that can be used to create ER models. The cost
and function of these tools vary wildly, from open source products up
through enterprise software that costs thousands of dollars per license. 

The full development cycle includes an iterative cycle of understand-
ing business requirements; defining product requirements; analysis and
design; implementation; testing (component, integration, and system);
deployment; administration and optimization; and change manage-
ment. No single product currently covers that entire scope. Instead,
product vendors provide, to varying degrees, suites of products that
focus on portions of that cycle. CASE tools for database design largely
focus on the analysis and design, and to a lesser degree testing, of the
database model and creation as illustrated in Figure 9.2.

CASE tools provide software that simplifies or automates some of the
steps described in Figure 9.2. Conceptual design includes steps such as
describing the business entities and functional requirements of the data-
base; logical design includes definition of entity relationships and nor-
mal forms; physical database design helps transform the logical design
into actual database objects, such as tables, indexes, and constraints. The
software tools provide significant value to database designers by:

1. Dramatically reducing the complexity of conceptual and logical
design, both of which can be rather difficult to do well. This
reduced complexity results in better database design in less time
and with less skill requirements for the user.

2. Automating transformation of the logical design to the physical
design (at least the basic physical design). This not only reduces
time and skill requirements for the designer, but significantly
removes chances of manual error in performing the conversion
from the logical model to the physical data definition language
(DDL), which the database server will “consume” (i.e., as input)
to create the physical database.

3. Providing the reporting, round trip engineering, and reverse engi-
neering that make such tools invaluable in maintaining systems
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over a long period of time. System design can and does evolve
over time due to changing and expanding business needs. Also,
the people who design the system (sometimes teams of people)
may not be the same as those charged with maintaining the sys-
tem. The complexity of large systems combined with the need for
continuous adaptability, virtually necessitates the use of CASE
tools to help visualize, reverse engineer, and track the system
design over time.

You can find a broader list of available database design tools at the
Web site “Database Answers” (http://www.databaseanswers.com/model-
ling_tools.htm), maintained by David Alex Lamb at Queen’s University
in Kingston, Canada.

9.2 Key Capabilities to Watch For

Design tools should be able to help you with both data modeling and
logical database design. Both processes are important. A good distinction
between these appears on the “Database Answers” Web site, cited above. 

For data modeling, the question you are asking is: What does the
world being modeled look like? In particular, you are looking for similar-
ities between things. Then you identify a “supertype” of thing which
may have subtypes. For example, Corporate Customers and Personal
Customers. If, for example, supplier contacts are conceptually different
things from customer contacts, then the answer is that they should be
modeled separately. On the other hand, if they are merely subsets of the
same thing, then treat them as the same thing.

For database design, you are answering a different question: How
can I efficiently design a database that will support the functions of a
proposed application or Web site? The key task here is to identify simi-
larities between entities so that you can integrate them into the same
table, usually with a “Type” indicator. For example, a Customer table,
which combines all attributes of both Corporate and Personal Custom-
ers. As a result, it is possible to spend a great deal of time breaking things
out when creating a Data Model, and then collapsing them back
together when designing the corresponding database.

Support for programmable and physical design attributes with a
design tool can also expand the value a tool provides. In database terms,
aspects to watch for will include support for indexes, uniqueness, trig-
gers, and stored procedures.
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The low-end tools (selling for less than US$100 or available as open
source) provide the most basic functionality for ER modeling. The
higher end products provide the kinds of support needed for serious
project design, such as: 

• Complete round trip engineering

• UML design

• Schema evolution; change management

• Reverse engineering of existing systems

• Team support, allowing multiple people to work on the same
project concurrently

• Integration with Eclipse and .NET and other tooling products

• Component and convention reuse (being able to reuse naming
standard, domain, and logical models over multiple design
projects)

• Reusable assets (e.g., extensibility, template)

• Reporting

9.3 The Basics

All of the products in question provide strong, easy to use functions for
both data modeling and database design. All of these products provide
the ability to graphically represent ER relationships. These tools also
provide transformation processes to map from an ER model into an
SQL design (DDL), using the transformation types described earlier in
Chapter 5:

• Transform each entity into a table containing the key and nonkey
attributes of the entity

• Transform every many-to-many binary or binary recursive rela-
tionship into a relationship table with the keys of the entities and
the attributes of the relationship

• Transform every ternary or higher-level n-ary relationship into a
relationship table

Similarly these tools produce the transformation table types
described in Chapter 5: 

Teorey.book  Page 192  Saturday, July 16, 2005  12:57 PM



9.3 The Basics 193

• An entity table with the same information content as the original
entity

• An entity table with the embedded foreign key of the parent
entity

• A relationship table with the foreign keys of all the entities in the
relationship

Chapter 5 also described rules for null transformations that must
apply, and the CASE tools typically enforce these. 

These CASE tools also help with the modeling of normal forms and
denormalization to develop a true physical schema for your database, as
described in Chapter 5. The tools provide graphical interfaces for physi-
cal database design as well as basic modeling of uniqueness, constraints,
and indexes. Figure 9.3 shows an example of the IBM Rational Data
Architect’s GUI for modeling ERs. Figure 9.4 shows a similar snapshot of
the interface for Computer Associate’s AllFusion ERwin Data Modeler. 

Figure 9.3 Rational Data Architect ER modeling (courtesy IBM Rational Division)
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After creating an ER model, the CASE tools enable easy modification
of the model and its attributes through graphical interfaces. An example
is shown below in Figure 9.5 with IBM’s Rational Data Architect, illus-
trating attribute editing. Of these CASE tools, Rational Data Architect
has perhaps the most useful UML modeling function for data modeling
and design. Its predecessor, Rational Rose Data Modeler, was the indus-
try’s first UML-based data modeler, and IBM has continued its leadership
in this area with Rational Data Architect. UML provides a somewhat
richer notation than information engineering (IE) entity-relationship
diagram (ERD) notation, particularly for conceptual and logical data
modeling. However, the IE-ERD notation is older and more commonly
used. One of the nice aspects of Rational Data Architect is the ability to
work with either UML or IE notation.

Figure 9.6 shows the AllFusion ERwin screen for defining the cardi-
nality of entity relationships. It is worth noting that many relationships
do not need to enter this dialog at all.

Figure 9.4 AllFusion ERwin Data Modeler ER modeling (picture from Computer Asso-
ciates, http://agendas.ca.com/Agendas/Presentations/AFM54PN.pdf)
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Figure 9.5 Property editing with IBM Rational Data Architect (courtesy IBM Rational
Division)

Figure 9.6 Specifying one-to-many relationships with ERwin (courtesy Computer
Associates)
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9.4 Generating a Database from a Design

To really take your design to the next level (i.e., a practical level) you will
need a good design tool that can interact with your specific database
product to actually create the Data Definition Language (DDL) and asso-
ciated scripts or commands to create and modify the basic database for
you. For instance, using the example of Chapter 7, we have modeled an
ER model containing the sales relationships shown in Table 9.1.

 The CASE tools will automatically generate the required scripts,
including the DDL specification to create the actual database, and will
provide you with an option to apply those changes to an actual data-
base, as follows: 

create table customer (cust_no   char(6),
     job_title    varchar(256),
     primary key (cust_no),
     foreign key (job_title) references job
     on delete set null on update cascade);

create table job (job_title   varchar(256),
     primary key (job_title));

create table order (order_no  char(9),
     cust_no      char(6) not null,
     primary key (order_no),
     foreign key (cust_no) references customer
     on delete cascade on update cascade);

Table 9.1 ER Model Containing Sales Relationships

ER Construct FDs

Customer(many): Job(one) cust-no -> job-title

Order(many): Customer(one) order-no -> cust-no

Salesperson(many): Department(one) sales-name -> dept-no

Item(many): Department(one) item-no -> dept-no

Order(many): Item(many): Salesperson(one) order-no,item-no->sales-name

Order(many): Department(many): Salesperson(one) order-no,dept-no-> sales-name
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create table salesperson (sales_name varchar(256),
     dept_no      char(2),
     primary key (sales_name),
     foreign key (dept_no) references department
     on delete set null on update cascade);

create table department (dept_no char(2),
     primary key (dept_no));

create table item (item_no   char(6),
     dept_no      char(2),
     primary key (item_no),
     foreign key (dept_no) references department
     on delete set null on update cascade);

create table order_item_sales (order_no   char(9),
     item_no      char(6),
     sales_name   varchar(256) not null,
     primary key (order_no, item_no),
     foreign key (order_no) references order
     on delete cascade on update cascade,
     foreign key (item_no) references item
     on delete cascade on update cascade,
     foreign key (sales_name) references salesperson
     on delete cascade on update cascade);

create table order_dept_sales (order_no   char(9),
     dept_no      char(2),
     sales_name   varchar(256) not null,
     primary key (order_no, dept_no),
     foreign key (order_no) references order
     on delete cascade on update cascade,
     foreign key (dept_no) references department
     on delete cascade on update cascade,
     foreign key (sales_name) references salesperson
     on delete cascade on update cascade);

It is worth noting that with all the CASE tools we discuss here, the
conversion of the logical design to the physical design is quite rudimen-
tary. These tools help create basic database objects, such as tables and, in
some cases, indexes. However, the advanced features of the database
server are often not supported—where they are supported, the CASE tool
is usually behind by two or three software releases. Developing advanced
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physical design features, such as multidimensional clustering or materi-
alized views, is far beyond the capabilities of the logical design tools we
are discussing. Advanced physical database design is often highly depen-
dant on data density and data access patterns. One feature of Rational
Data Architect that stands out is that it provides linkages with the auto-
matic computing (self-managing) capabilities within DB2 to provide
semi-automated selection of advanced physical design attributes.

Figure 9.7 shows an example with ERwin schema generation, gener-
ating the DB2 DDL directly from the ER model designed within ERwin. 

Other very important capabilities shared by these tools include the
ability to reverse-engineer existing databases (for which you may not
have an existing ER or physical UML model), and the ability to automat-
ically materialize the physical model or incremental changes of a model
onto a real database. This capability enables you to synchronize your
database design with a real database as you make changes. This capacity

Figure 9.7 ERwin schema generation for a DB2 database (picture from IBM: http://
www.redbooks.ibm.com/abstracts/redp3714.html?Open)
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is massively useful for incremental application and database develop-
ment, as well as for incremental maintenance. 

9.5 Database Support

All of these products support a large array of database types. Certainly,
all of the major database vendors are supported by each of these prod-
ucts (i.e., DB2 UDB, DB2 zOS, Informix IDS, Oracle, SQL Server), and a
much larger set is supported through ODBC. However, what really mat-
ters most to the application developer is whether the database he or she
is programming toward is directly supported by the CASE design tool.
Database support is not equal between these products. Also, very signifi-
cantly, each database product will have unique features of its own (such
as reverse scan indexes, informational constraints, and so forth) which
are not standard. One of the qualitative attributes of a good database
design tool is whether it distinguishes and supports the unique exten-
sions of individual database products. Each of the products has a strong
history for doing so: in descending order, AllFusion ERwin Data Mod-
eler, Sybase PowerDesigner, and Rational Data Architect. Notably, IBM’s
Rational Data Architect has a somewhat smaller range of supported data-
bases than the other products, though it does support all the major data-
base platforms. However, Rational Data Architect can be expected over
time to have the tightest integration with the DB2 and Informix fami-
lies, since all of these products are developed by IBM. Database designers

Figure 9.8 DBMS selection in AllFusion ERwin Data Modeler (picture from Computer
Associates: http://iua.org.uk/conference/Autumn%202003/Ruth%20Wunderle.ppt#9)
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are advised to investigate the level of support provided by a CASE tool
for the database being developed toward, to ensure the level of support
is adequate. Figure 9.8 shows an example of database server selection
with AllFusion ERwin Data Modeler.

9.6 Collaborative Support

All three of these products are designed for collaborative development,
so that multiple developers can work together to design portions of a
database design, either supporting different applications or collaborating
on the same portions. These collaboration features fall into two
domains: 

1. Concurrency control. This form of collaboration ensures that
multiple designers do not modify the same component of the
database design at the same time. This is comparable in software
development terms to a source code control system.

2. Merge and collaboration capabilities. This form of collabo-
ration enables designers to combine designs or merge their latest
changes into a larger design project. These merging capabilities
compare components between what is already logged into the

Figure 9.9 Merge process with PowerDesigner (courtesy of Sybase)
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project system and what a designer wishes to add or modify. The
CASE tools locate the conflicting changes and visually identify
them for the designer, who can decide which changes should be
kept, and which discarded in favor of the model currently defined
in the project.

Figure 9.9 shows the Sybase PowerDesigner merge GUI, which iden-
tifies significant changes between the existing schema and the new
schema being merged. In particular, notice how the merge tool has iden-
tified a change in Table_1 Column_1, which has changed base types.
The tool also found that Table_2 and Table_3, which exist in the merg-
ing design, were not present in the base design. AllFusion ERwin Data
Modeler and Rational Data Architect have similar capabilities for merg-
ing design changes. 

9.7 Distributed Development

Distributed development has become a fact of life for large enterprise
development teams, in which groups of developers collaborate from
geographically diverse locations to develop a project. The phenomenon
is not only true across floors of a building, or between sites in a city, but
now across states, provinces, and even countries. In fact, outsourcing of
software development has become a tour de force, with many analysts
projecting that the average enterprise will ultimately outsource 60% of
application work, shifting aspects of project development to locations
with cheaper labor. As the META Group said in its September 16, 2004
Offshore Market Milieu report, “With global resources costing one-third to
one-fifth that of American employees—without accounting for hidden costs
and having higher process discipline, offshore strategies now pervade North
American IT organizations.”

Therefore, developers of database software working in a distributed
collaborative environment need to consider the collaborative and dis-
tributed qualities of CASE tools for database design. The trend towards
collaborative development and distributed development shows no sign
of slowing; rather, it is on the increase. In the existing space, IBM’s Ratio-
nal MultiSite software, shown in Figure 9.10, allows the best administra-
tion across geographically diverse locations for replicating project soft-
ware and data and subsequently merging the results. Rational MultiSite
is a technology layered on top of Rational ClearCase and Rational Clear-
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Quest (development and source code control products) to allow local
replicas of Rational ClearCase and Rational ClearQuest repositories.
Rational MultiSite also handles the automatic synchronization of the
replicas. This is particularly useful for companies with distributed devel-
opment who wish to have fast response times for their developers via
access to local information, and such replication is often an absolute
requirement for geographically distributed teams.

9.8 Application Life Cycle Tooling Integration

The best CASE tools for database design are integrated with a complete
suite of application development tools that cover the software develop-
ment life cycle. This allows the entire development team to work from
an integrated tool platform, rather than the data modelers being off in
their own world. Only the largest vendors offer this, and in fact true
tooling integration across the development life cycle is somewhat rare.
This solution is, in a very real way, the philosopher’s stone of develop-
ment infrastructure vendors. All the vendors who produce software
development platforms have been working to develop this breadth dur-
ing the past two decades. The challenge is elusive simply because it is
hard to do well. The three companies we are discussing here all have

Figure 9.10 IBM’s Rational MultiSite software for massively distributed software
management (courtesy IBM Rational Division)
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broad offerings, and provide some degree of integration with their data-
base design CASE technology. 

For Computer Associates, the AllFusion brand is a family of develop-
ment life cycles tools. It is intended to cover designing, building, deploy-
ing and managing eBusiness applications. Sybase also has a broad prod-
uct suite, and their strength is in collaborative technology. From a
design perspective, the ability to plug Sybase PowerDesigner into their
popular Sybase Power Builder application development tooling is a very
nice touch, as seen in Figure 9.11. The IBM tooling is clearly the broadest
based, and their new IBM Software Development Platform, which is
built heavily but not exclusively from their Rational products, covers
everything from requirements building to portfolio management, source
code control, architectural design constraints, automated testing, perfor-
mance analysis, and cross site development. A representation of the IBM
Software Development Platform is shown in Figure 9.12.

Figure 9.11 Sybase PowerDesigner plug-in to Sybase PowerBuilder (picture from
http://www.pbugg.de/docs/1, Berndt Hambock)
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9.9 Design Compliance Checking

With all complex designs, and particularly when multiple designers are
involved, it can be very hard to maintain the integrity of the system
design. The best software architects and designers grapple with this by
defining design guidelines and rules. These are sometimes called “design
patterns” and “anti-patterns.” A design pattern is a design principle that
is expected to be generally adhered to within the system design. Con-
versely, an anti-pattern is precisely the opposite. It represents flaws in
the system design that can occur either through violation of the design
patterns or through explicit definition of an anti-pattern. The enforce-
ment of design patterns and anti-patterns is an emerging attribute of the
best CASE tools for systems design in general, and database design in
particular. Figure 9.13 shows an example of the interface used in the
Rational Data Architect for compliance checking, which scans the sys-
tem to enforce design patterns and check for anti-patterns. Some degree
of support for design pattern and anti-pattern checking exists in All-
Fusion ERwin Data Modeler and Sybase PowerDesigner, as well. The
compliance checking in IBM’s Rational products is the most mature in

Figure 9.12 IBM Software Development Platform (courtesy IBM Rational Division)
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general, with the notion of design patterns and anti-patterns being a key
philosophical point for the IBM’s Rational family of products. Some
examples of things these compliance checkers will scan for include: 

• Complete round trip engineering

• Design and normalization

— Discover 1st, 2nd, and 3rd normalization

• Index and storage

— Check for excessive indexing

• Naming standards

• Security compliance

• Sarbanes-Oxley compliance

— Check for valid data model and rules

• Model syntax checks

Figure 9.13 Modeling and database compliance checking (courtesy IBM Rational
Division)
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9.10 Reporting

Reporting capabilities are a very important augmentation of the design
capabilities in CASE tools for database design. These reports allow you to
examine your ER and UML modeling and database schema in both
graphical and textual formats. The Sybase products have a superb repu-
tation for reporting features; their products enable you to generate
reports in common formats like Microsoft Word. Reporting can include
both the modeling and the annotations that the designer has added. It
can cover physical data models, conceptual data models, object-oriented

Figure 9.14 Reporting features with Sybase PowerDesigner (courtesy Sybase)
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models (UML), business process models, and semi-structured data using
eXtensible Markup Language (XML). Notice in Figure 9.14 how the
fourth page, which contains graphics, can be oriented in landscape
mode, while the remaining pages are kept in portrait mode. AllFusion
ERwin and Rational Data Architect also provide rich reporting features,
though Sybase PowerDesigner has the richest capabilities. 

9.11 Modeling a Data Warehouse

In Chapter 8 we discussed the unique design considerations required for
data warehousing and decision support. Typically, warehouses are
designed to support complex queries that provide analytic analysis of
your data. As such, they exploit different schema topology models, such
as star schema and horizontal partitioning. They typically exploit data
views and materialized data views, data aggregation, and multidimen-
sional modeling far more extensively than other operational and trans-
actional databases. 

Traditionally, warehouses have been populated with data that is
extracted and transformed from other operational databases. However,
more and more companies are moving to consolidate system resources
and provide real-time analytics by either feeding warehouses data in
near-real-time (i.e., with a few minutes latency) or entirely merging their
transactional data stores with their analytic warehouses into a single
server or cluster. These trends are known as “active data warehousing,”
and pose even more complex design challenges. There is a vast need for
CASE tooling in this space. 

Sybase offers a CASE tool known as Sybase Industry Warehouse Stu-
dio (IWS). Sybase IWS is really a set of industry-specific, prepackaged
warehouses that require some limited customization. Sybase IWS tooling
provides a set of wizards for designing star schemas, dimensional tables,
denormalization, summarization, and partitioning; as usual, the Sybase
tools are strong on reporting facilities.

The industry domains covered by ISW are fairly reasonable—they
include IWS for Media, IWS for Healthcare, IWS for Banking, IWS for
Capital Markets, IWS for Life Insurance, IWS for Telco, IWS for Credit
Cards, IWS fro P&C Insurance, and IWS for CRA.

IBM’s DB2 Cube Views (shown in Figure 9.15) provides OLAP and
multidimensional modeling. DB2 Cube Views allows you to create meta-
data objects to dimensionally model OLAP structures and relational
data. The graphical interface allows you to create, manipulate, import,
or export cube models, cubes, and other metadata objects.
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Sybase IWS uses standard database design constructs that port to
many database systems, such as DB2 UDB, Oracle, Microsoft SQL Server,
Sybase Adaptive Server Enterprise, and Sybase IQ. In contrast, IBM’s DB2
Cube Views is designed specifically to exploit DB2 UDB. The advantage
of DB2 Cube View is that it can exploit product-specific capabilities in
the DB2 database that may not be generally available in other databases.
Some examples of this include materialized query tables (precomputed
aggregates and cubes), multidimensional clustering, triggers, functional
dependencies, shared-nothing partitioning, and replicated MQTs. Sybase
IWS dependence on the lowest common denominator database feature
provides flexibility when selecting the database server but may prove
extremely limiting for even moderately sized marts and warehouses (i.e.,
larger than 100 GB), where advanced access and design features become
critical. 

To summarize and contrast, Sybase offers portable warehouse designs
that require minimal customization and are useful for smaller systems,
and DB2 Cube View provides significantly richer and more powerful
capabilities, which fit larger systems, require more customization, and
necessitate DB2 UDB as the database server.

Figure 9.15 DB2 Cube Views interface (courtesy IBM Rational Division)
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AllFusion ERwin Data Modeler has basic support to model OLAP and
multidimensional databases, but does not have the same richness of
tooling and wizards that the other companies offer to actually substan-
tially simplify the design process of these complex systems.

9.12 Semi-Structured Data, XML

XML (eXtensible Markup Language) is a data model consisting of nodes
of several types linked together with ordered parent/child relationships
to form a hierarchy. One representation of that data model is textual—
there are others that are not text! XML has increasingly become a data
format of choice for data sharing between systems. As a result, increas-
ing volumes of XML data are being generated. 

While XML data has some structure it is not a fully-structured for-
mat, such as the table definitions that come from a fully-structured
modeling using ER with IE or UML. XML is known in the industry as a
semi-structured format: It lacks the strict adherence of schema that
structured data schemas have, yet it has some degree of structure which
distinguishes it from completely unstructured data, such as image and
video data.

Standards are forming around XML to allow it to be used for data-
base style design and query access. The dominant standards are XML
Schema and XML Query (also known as XQuery). Also worth noting is
OMG XMI standard, which defines a standard protocol for defining a
structured format for XML interchange, based on an object model. Pri-
marily for interfacing reasons, UML tools such as MagicDraw have taken
XMI seriously and have therefore become the preferred alternatives in
the open source space.

XML data is text-based, and self-describing (meaning that XML
described the type of each data point, and defines its own schema). XML

Figure 9.16 An XML schema for a recipe
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has become popular for Internet-based data exchange based on these
qualities as well as being “well-formed.” Well-formed is a computer sci-
ence term, implying XML’s grammar is unambiguous through the use of
mandated structure that guarantees terms are explicitly prefixed and
closed. Figure 9.16 shows the conceptual design of a semi-structured
document type named “recipe.” Figure 9.17 shows an XML document
for a hot dog recipe. Notice that the file is completely textual. 

IBM Rational Data Architect and Sybase PowerDesigner have taken
the lead in being early adopters of XML data modeling CASE tools. Both
products support the modeling of semi-structured data through XML
and provide graphical tooling for modeling XML hierarchies. 

Figure 9.17 An XML document for a hot dog
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9.13 Summary

There are several good CASE tools available for computer-assisted data-
base design. This chapter has touched on some of the features for three
of the leading products: IBM Rational Data Architect, Computer Associ-
ates AllFusion ERwin Data Modeler, and Sybase PowerDesigner. Each
provides powerful capabilities to assist in developing ER models and
transforming those models to logical database designs and physical
implementations. All of these products support a wide range of database
vendors, including DB2 UDB, DB2 zOS, Informix Data Server (IDS), Ora-
cle, SQL Server, and many others through ODBC support. Each product
has different advantages and strengths. The drawbacks a product may
have now are certain to be improved over time, so discussing the relative
merits of each product in a book can be somewhat of an injustice to a
product that will deliver improved capabilities in the near future. 

At the time of authoring this text, Computer Associate’s AllFusion
ERwin Data Modeler had advantages as a mature product with vast data-
base support. The AllFusion products don’t have the advanced complex
feature support for XML and warehousing/analytics, but what they do
support they do well. Sybase PowerDesigner sets itself apart for superior
reporting capabilities. IBM’s Rational Data Architect has the best integra-
tion with a broad software application development suite of tooling, and
the most mature use of UML. Both the Sybase and IBM tools are blazing
new ground in their early support for XML semi structured data and for
CASE tools for warehousing and OLAP. The best products provide the
highest level of integration into a larger software development environ-
ment for large-scale collaborative, and possible geographically diverse,
development. These CASE tools can dramatically reduce the time, cost,
and complexity of developing, deploying, and maintaining a database
design. 

9.14 Literature Summary

Current logical database design tools can be found in manufacturer Web
sites [Database Answers, IBM Rational Software, Computer Associates,
Sybase PowerDesigner, Directroy of Data Modeling Resources, Objects by
Design, Understanding relational databases: referential integrity, and
Widom].
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Appendix

The Basics of SQL

Structured Query Language, or SQL, is the ISO-ANSI standard data defi-
nition and manipulation language for relational database management
systems. Individual relational database systems use slightly different dia-
lects of SQL syntax and naming rules, and these differences can be seen
in the SQL user guides for those systems. In this text, as we explore each
step of the logical and physical design portion of the database life cycle,
many examples of database table creation and manipulation make use of
SQL syntax.

Basic SQL use can be learned quickly and easily by reading this
appendix. The more advanced features, such as statistical analysis and
presentation of data, require additional study and are beyond the reach
of the typical nonprogrammer. However, the DBA can create SQL views
to help nonprogrammers set up repetitive queries; other languages, such
as forms, are being commercially sold for nonprogrammers. For the
advanced database programmer, embedded SQL (in C programs, for
instance) is widely available for the most complex database applications,
which need the power of procedural languages.

This appendix introduces the reader to the basic constructs for the
SQL-99 (and SQL-92) database definition, queries, and updates through
a sequence of examples with some explanatory text. We start with a def-
inition of SQL terminology for data types and operators. This is followed
by an explanation of the data definition language (DDL) constructs
using the “create table” commands, including a definition of the various
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types of integrity constraints, such as foreign keys and referential integ-
rity. Finally, we take a detailed look at the SQL-99 data manipulation
language (DML) features through a series of simple and then more com-
plex practical examples of database queries and updates. 

The specific features of SQL, as implemented by the major vendors
IBM, Oracle, and Microsoft, can be found in the references at the end of
this appendix.

A.1 SQL Names and Operators

This section gives the basic rules for SQL-99 (and SQL-92) data types and
operators.

• SQL names: Although these have no particular restrictions, some
vendor-specific versions of SQL do have some restrictions. For
example, in Oracle, names of tables and columns (attributes) can
be up to 30 characters long, must begin with a letter, and can
include the symbols (a-z, 0-9,_,$,#). Names should not duplicate
reserved words or names for other objects (attributes, tables,
views, indexes) in the database. 

• Data types for attributes: character, character varying, numeric,
decimal, integer, smallint, float, double precision, real, bit, bit
varying, date, time, timestamp, interval.

•  Logical operators: and, or, not, ().

• Comparison operators: =, <>, <, <=, >, >=, (), in, any, some, all,
between, not between, is null, is not null, like.

• Set operators:

— union: combines queries to display any row in each subquery

— intersect: combines queries to display distinct rows common
to all subqueries

— except: combines queries to return all distinct rows returned
by the first query, but not the second (this is “minus” or “dif-
ference” in some versions of SQL)

• Set functions: count, sum, min, max, avg.

• Advanced value expressions: CASE, CAST, row value constructors.
CASE is similar to CASE expressions in programming languages,
in which a select command needs to produce different results
when there are different values of the search condition. The CAST
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expression allows you to convert data of one type to a different
type, subject to some restrictions. Row value constructors allow
you to set up multiple column value comparisons with a much
simpler expression than is normally required in SQL (see Melton
and Simon [1993] for detailed examples).

A.2 Data Definition Language (DDL)

The basic definitions for SQL objects (tables and views) are:

• create table: defines a table and all its attributes

• alter table: add new columns, drop columns, or modifies existing
columns in a table

• drop table: deletes an existing table

• create view, drop view: defines/deletes a database view (see Section
A.3.4 )

Some versions of SQL also have create index/drop index, which
defines/deletes an index on a particular attribute or composite of several
attributes in a particular table.

The following table creation examples are based on a simple data-
base of three tables: customer, item, and order. (Note that we put
table names in boldface throughout the book for readability.) 

 create table customer
       (cust_num      numeric,
       cust_name      char(20),
       address        varchar(256),
       credit_level   numeric,
       check (credit_level >= 1000),
       primary key (cust_num));

Note that the attribute cust_num could be defined as “numeric not
null unique” instead of explicity defined as the primary key, since they
both have the same meaning. However, it would be redundant to have
both forms in the same table definition. The check rule is an important
integrity constraint that tells SQL to automatically test each insertion of
credit_level value for something greater than or equal to 1000. If not, an
error message should be displayed.
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create table item
       (item_num     numeric,
       item_name     char(20),
       price         numeric,
       weight        numeric,
       primary key (item_num));

create table order
       (ord_num      char(15),
       cust_num      numeric  not null,
       item_num      numeric  not null,
       quantity      numeric,
       total_cost    numeric,
       primary key (ord_num),
       foreign key (cust_num) references customer
            on delete no action on update cascade,
       foreign key (item_num) references item
            on delete no action on update cascade);

SQL, while allowing the above format for primary key and foreign
key, recommends a more detailed format, shown below, for table order:

constraint pk_constr primary key (ord_num),
constraint fk_constr1 foreign key 
      (cust_num) references customer 
      (cust_num) on delete no action on update cascade,
constraint fk_constr2 foreign key 
      (item_num) references item (item_num)
      on delete no action on update cascade);

in which pk_constr is a primary key constraint name, and fk_constr1
and fk_constr2 are foreign key constraint names. The word “constraint”
is a keyword, and the object in parentheses after the table name is the
name of the primary key in that table referenced by the foreign key.

The following constraints are common for attributes defined in the
SQL create table commands:

• Not null: a constraint that specifies that an attribute must have a
nonnull value. 

• Unique: a constraint that specifies that the attribute is a candidate
key; that is, that it has a unique value for every row in the table.
Every attribute that is a candidate key must also have the con-
straint not null. The constraint unique is also used as a clause to
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designate composite candidate keys that are not the primary key.
This is particularly useful when transforming ternary relation-
ships to SQL.

• Primary key: the primary key is a set of one or more attributes that,
when taken collectively, enables us to uniquely identify an entity
or table. The set of attributes should not be reducible (see Section
6.1.2). The designation primary key for an attribute implies that
the attribute must be not null and unique, but the SQL keywords
NOT NULL and UNIQUE are redundant for any attribute that is
part of a primary key, and need not be specified in the create table
command.

• Foreign key: the referential integrity constraint specifies that a for-
eign key in a referencing table column must match an existing
primary key in the referenced table. The references clause speci-
fies the name of the referenced table. An attribute may be both a
primary key and a foreign key, particularly in relationship tables
formed from many-to-many binary relationships or from n-ary
relationships.

Foreign key constraints are defined for deleting a row on the refer-
enced table and for updating the primary key of the referenced table.
The referential trigger actions for delete and update are similar:

• on delete cascade: the delete operation on the referenced table
“cascades” to all matching foreign keys.

• on delete set null: foreign keys are set to null when they match the
primary key of a deleted row in the referenced table. Each foreign
key must be able to accept null values for this operation to apply.

• on delete set default: foreign keys are set to a default value when
they match the primary key of the deleted row(s) in the reference
table. Legal default values include a literal value, “user,” “system
user,” or “no action.”

• on update cascade: the update operation on the primary key(s) in
the referenced table “cascades” to all matching foreign keys.

• on update set null: foreign keys are set to null when they match the
old primary key value of an updated row in the referenced table.
Each foreign key must be able to accept null values for this opera-
tion to apply.

• on update set default: foreign keys are set to a default value when
they match the primary key of an updated row in the reference
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table. Legal default values include a literal value, “user,” “system
user,” or “no action.” 

The cascade option is generally applicable when either the manda-
tory existence constraint or the ID dependency constraint is specified in
the ER diagram for the referenced table, and either set null or set default is
applicable when optional existence is specified in the ER diagram for the
referenced table (see Chapters 2 and 5). 

Some systems, such as DB2, have an additional option on delete or
update, called restricted. Delete restricted means that the referenced table
rows are deleted only if there are no matching foreign key values in the
referencing table. Similarly, update restricted means that the referenced
table rows (primary keys) are updated only if there are no matching for-
eign key values in the referencing table. 

Various column and table constraints can be specified as deferrable
(the default is not deferrable), which means that the DBMS will defer
checking this constraint until you commit the transaction. Often this is
required for mutual constraint checking.

The following examples illustrate the alter table and drop table com-
mands. The first alter table command modifies the cust_name data type
from char(20) in the original definition to varchar(256). The second and
third alter table commands add and drop a column, respectively. The add
column option specifies the data type of the new column.

alter table customer 
modify (cust_name varchar(256));

alter table customer
add column cust_credit_limit numeric;

alter table customer
drop column credit_level;

drop table customer;

A.3 Data Manipulation Language (DML)

Data manipulation language commands are used for queries, updates,
and the definition of views. These concepts are presented through a
series of annotated examples, from simple to moderately complex.
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A.3.1 SQL Select Command

The SQL select command is the basis for all database queries. The follow-
ing series of examples illustrates the syntax and semantics of the select
command for the most frequent types of queries in everyday business
applications. To illustrate each of the commands, we assume the follow-
ing set of data in the database tables:

customer table

cust_num   cust_name       address         credit_level
001        Kirk            Enterprise      10
002        Spock           Enterprise       9
003        Scotty          Enterprise       8
004        Bones           Enterprise       8
005        Gorn            PlanetoidArena   1
006        Khan            CetiAlphaFive    2
007        Uhura           Enterprise       7
008        Chekov          Enterprise       6
009        Sulu            Enterprise       6

item table

item_num   item_name       price           weight
125        phaser           350                2
137        beam            1500              250
143        shield          4500             3000
175        fusionMissile   2750              500
211        captainsLog       50                2
234        starShip       25000            15000
356        sensor           245               15
368        intercom        1200               75
399        medicalKit        75                3

order table

ord_num    cust_num    item_num    quantity    total_cost
10012        005       125           2        700
10023        006       175           20       55000
10042        003       137           3        4500
10058        001       211           1        50
10232        007       368           1        1200
10266        002       356           50       12250
10371        004       399           10       750
11070        009       143           1        4500
11593        008       125           2        700
11775        006       125           3        1050
12001        001       234           1        25000
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Basic Commands

1. Display the entire customer table. The asterisk (*) denotes that
all records from this table are to be read and displayed.

select * 
from customer;

This results in a display of the complete customer table (as
shown above).

2. Display customer name, customer number, and credit level for all
customers on the Enterprise who have a credit level greater than
7. Order by ascending sequence of customer name (the order-by
options are asc, desc). Note that the first selection condition is
specified in the where clause and succeeding selection conditions
are specified by and clauses. Character type data and other non-
numeric data are placed inside single quotes, but numeric data is
given without quotes. Note that useful column names can be cre-
ated by using formatting commands (which are not shown here).

select cust_name, cust_num, credit_level 
from customer
where address = 'Enterprise'
and credit_level > 7
order by cust_name asc;

customer name   customer number   credit level
----------------------------------------------
Bones              004               8
Kirk               001               10
Scotty             003               8
Spock             002               9

3. Display all customer and order item information (all columns),
but omit customers with a credit level greater than 6. In this
query, the from clause shows the definition of abbreviations c and
o for tables customer and order, respectively. The abbreviations
can be used anywhere in the query to denote their respective
table names. This example also illustrates a join between tables
customer and order, using the common attribute name
cust_num as shown in the where clause. The join finds matching
cust_num values from the two tables and displays all the data
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from the matching rows, except where the credit number is 7 or
above, and ordered by customer number.

select c.*, o.*
from customer as c, order as o
where c.cust_num = o.cust_num
and c.credit_level < 7
order by cust_no asc;

cust. no. cust. name   address         credit level  order no.  item no.  qty   total  cost

-------------------------------------------------------------------------------------------
005        Gorn        PlanetoidArena  1             10012      125       2     700
006        Khan        CetiAlphaFive   2             11775      125       3     1050
006        Khan        CetiAlphaFive   2             10023      175       20    55000
008        Chekov      Enterprise      6             11593      125       2     700
009        Sulu        Enterprise      6             11070      143       1     4500

Union and Intersection Commands

1. Which items were ordered by customer 002 or customer 007?
This query can be answered in two ways, one with a set operator
(union) and the other with a logical operator (or).

select item_num, item_name, cust_num, cust_name 
from order
where cust_num = 002        
union
select item_num, item_name, cust_num, cust_name 
from order
where cust_num = 007;

select item_num, item_name, cust_num, cust_name 
from order
where (cust_num = 002 or cust_num = 007);

item number   item name   customer no.  customer name
-----------------------------------------------------
356           sensor      002           Spock
368           intercom    007           Uhura

2. Which items are ordered by both customers 005 and 006? All the
rows in table order that have customer 005 are selected and com-
pared to the rows in order that have customer 006. Rows from
each set are compared with all rows from the other set, and those
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that have matching item numbers have the item numbers dis-
played.

select item_num, item_name, cust_num, cust_name 
from order        
where cust_num = 005
intersect
select item_num, item_name, cust_num, cust_name 
from order
where cust_num = 006;

item number   item name   customer no   customer name
-----------------------------------------------------
125           phaser      005           Gorn
125           phaser      006           Khan

Aggregate Functions

1. Display the total number of orders. This query uses the SQL func-
tion count to count the number of rows in table order.

select count(*) 
from order;

count(order)
--------------------
11

2. Display the total number of customers actually placing orders for
items. This is a variation of the count function and specifies that
only the distinct number of customers is to be counted. The dis-
tinct modifier is required because duplicate values of customer
numbers are likely to be found, since a customer can order many
items and will appear in many rows of table order.

select count (distinct cust_num) 
from order;

distinct count(order)
-------------------------
9
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3. Display the maximum quantity of an order of item number 125.
The SQL maximum function is used to search the table order,
select rows where the item number is 125, and display the maxi-
mum value of quantity from the rows selected.

select max (quantity) 
from order
where item_num = 125;

max(quantity)
-----------------
3

4. For each type of item ordered, display the item number and total
order quantity. Note that item_num and item_name in the select
line must be in a group by clause. In SQL, any attribute to be dis-
played in the result of the select command must be included in a
group by clause when the result of an SQL function is also to be
displayed. The group by clause results in a display of the aggregate
sum of quantity values for each value of item_num and
item_name. The aggregate sums will be taken over all rows with
the same value of item_num.

select item_num, item_name, sum(quantity) 
from order
group by item_num, item_name;

item number    item name    sum(quantity)
-----------------------------------------
125            phaser         7
137            beam           3
143            shield         1
175            fusionMissile  20
211            captainsLog    1
234            starShip       1
356            sensor         50
368            intercom       1
399            medicalKit     10

5. Display item numbers for all items ordered more than once. This
query requires the use of the group by and having clauses to display
data that is based on a count of rows from table order having the
same value for attribute item_num.

Teorey.book  Page 223  Saturday, July 16, 2005  12:57 PM



224 Appendix: The Basics of SQL

select item_num, item_name
from order
group by item_num, item_name
having count(*) >1;

item number    item name
----------------------------
125            phaser

Joins and Subqueries 

1. Display customer names of the customers who order item num-
ber 125. This query requires a join (equijoin) of tables customer
and order to match customer names with item number 125.
Including the item_num column in the output verifies that you
have selected the item number you want. Note that the default
ordering of output is typically ascending by the first column.

select c.cust_name, o.item_num
from customer as c, order as o 
where c.cust_num = o.cust_num
and item_num = 125;

customer name       item number
----------------    ---------------
Chekov              125
Gorn                125
Khan                125

This query can be equivalently performed with a subquery (some-
times called a nested subquery) with the following format. The
select command inside the parentheses is a nested subquery and is
executed first, resulting in a set of values for customer number
(cust_num) selected from the order table. Each of those values is
compared with cust_num values from the customer table, and
matching values result in the display of customer name from the
matching row in the customer table. This is effectively a join
between tables customer and order with the selection condi-
tion of item number 125.
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select cust_name, order_num
from customer 
where cust_num in
      (select cust_num
      from order 
      where item_num = 125);

2. Display names of customers who order at least one item priced
over 1000. This query requires a three-level nested subquery for-
mat. Note that the phrases in, = some, and = any in the where
clauses are often used as equivalent comparison operators; see
Melton and Simon [1993].

select c.cust_name
from customer as c
where c.cust_num in
     (select o.cust_num
     from order as o
     where o.item_num = any
     (select i.item_num
     from item as i
     where i.price > 1000));

customer name
------------------
Khan
Kirk
Scotty
Sulu
Uhura

3. Which customers have not ordered any item priced over 100?
Note that one can equivalently use not in instead of not any. The
query first selects the customer numbers from all rows from the
join of tables order and item where the item price is over 100.
Then it selects rows from table customer where the customer
number does not match any of the customers selected in the sub-
query, and displays the customer names.

select c.cust_name
from customer as c
where c.cust_num not any
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(select o.cust_num
from order as o, item as i
where o.item_num = i.item_num
and i.price > 100);

customer name
------------------
Bones

4. Which customers have only ordered items weighing more than
1000? This is an example of the universal quantifier all. First the
subquery selects all rows from table item where the item weight
is over 1000. Then it selects rows from table order where all rows
with a given item number match at least one row in the set
selected in the subquery. Any rows in order satisfying this condi-
tion are joined with the customer table, and the customer name
is displayed as the final result.

select c.cust_name
from customer as c, order as o
where c.cust_num = o.cust_num
and o.item_num = all
     (select i.item_num
     from item as i
     where i.weight > 1000);

customer name
------------------
Sulu

Note that Kirk has ordered one item weighing over 1000 (star-
Ship), but he has also ordered an item weighing under 1000 (cap-
tainsLog), so his name does not get displayed.

A.3.2 SQL Update Commands

The following SQL update commands relate to our continuing example
and illustrate typical usage of insertion, deletion, and update of selected
rows in tables.

This command adds one more customer (klingon) to the customer
table:
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insert into customer 
values (010,’klingon’,’rogueShip’,4);

This command deletes all customers with credit levels less than 2:

delete from customer 
where credit_level < 2;

This command modifies the credit level of any customer with level 6
to level 7:

update customer
set credit_level = 7
where credit_level = 6;

A.3.3 Referential Integrity 

The following update to the item table resets the value of item_num for
a particular item, but because item_num is a foreign key in the order
table, SQL must maintain referential integrity by triggering the execu-
tion sequence named by the foreign key constraint on update cascade in
the definition of the order table (see Section A2). This means that, in
addition to updating a row in the item table, SQL will search the order
table for values of item_num equal to 368 and reset each item_num
value to 370. 

update item
set item_num = 370
where item_num = 368;

If this update had been a delete instead, such as the following:

delete from item
where item_num = 368;

then the referential integrity trigger would have caused the additional
execution of the foreign key constraint on delete set default in order (as
defined in Section A.2), which finds every row in order with item_num
equal to 368 and takes the action set up in the default. A typical action
for this type of database might be to set item_num to either null or a
predefined literal value to denote that the particular item has been
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deleted; this would then be a signal to the system that the customer
needs to be contacted to change the order. Of course, the system would
have to be set up in advance to check for these values periodically.

A.3.4 SQL Views

A view in SQL is a named, derived (virtual) table that derives its data
from base tables, the actual tables defined by the create table command.
View definitions can be stored in the database, but the views (derived
tables) themselves are not stored; they are derived at execution time
when the view is invoked as a query using the SQL select command. The
person who queries the view treats the view as if it were an actual
(stored) table, unaware of the difference between the view and the base
table.

Views are useful in several ways. First, they allow complex queries to
be set up in advance in a view, and the novice SQL user is only required
to make a simple query on the view. This simple query invokes the more
complex query defined by the view. Thus, nonprogrammers are allowed
to use the full power of SQL without having to create complex queries.
Second, views provide greater security for a database, because the DBA
can assign different views of the data to different users and control what
any individual user sees in the database. Third, views provide a greater
sense of data independence; that is, even though the base tables may be
altered by adding, deleting, or modifying columns, the view query may
not need to be changed. While view definition may need to be changed,
that is the job of the DBA, not the person querying the view.

Views may be defined hierarchically; that is, a view definition may
contain another view name as well as base table names. This enables
some views to become quite complex.

In the following example, we create a view called “orders” that
shows which items have been ordered by each customer and how many.
The first line of the view definition specifies the view name and (in
parentheses) lists the attributes of that view. The view attributes must
correlate exactly with the attributes defined in the select statement in
the second line of the view definition:

create view orders (customer_name, item_name, 
     quantity) as
          select c.cust_name, i.item_name, o.quantity
          from customer as c, item as i, order as o
          where c.cust_num = o.cust_num
          and o.item_num = i.item_num;
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The create view command creates the view definition, which defines
two joins among three base tables customer, item, and order; and
SQL stores the definition to be executed later when invoked by a query.
The following query selects all the data from the view “orders.” This
query causes SQL to execute the select command given in the preceding
view definition, producing a tabular result with the column headings for
customer_name, item_name, and quantity.

select * 
from orders;

Usually, views are not allowed to be updated, because the updates
would have to be made to the base tables that make up the definition of
the view. When a view is created from a single table, the view update is
usually unambiguous, but when a view is created from the joins of mul-
tiple tables, the base table updates are very often ambiguous and may
have undesirable side effects. Each relational system has its own rules
about when views can and cannot be updated.
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activity diagram (UML)—A process workflow model (diagram) show-
ing the flow from one activity to the next.

aggregation—A special type of abstraction relationship that defines a
higher-level entity that is an aggregate of several lower-level enti-
ties; a “part-of” type relationship. For example, a bicycle entity
would be an aggregate of wheel, handlebar, and seat entities.

association—A relationship between classes (in UML); associations can
be binary, n-ary, reflexive, or qualified.

attribute—A primitive data element that provides descriptive detail
about an entity; a data field or data item in a record. For example,
lastname would be an attribute for the entity customer. Attributes
may also be used as descriptive elements for certain relationships
among entities.

automatic summary table (AST)—Materialized (summary) views or
aggregates of data saved by OLAP for future use to reduce query
time.

binary recursive relationship—A relationship between one occur-
rence of an entity with another occurrence of the same entity.

binary relationship—A relationship between occurrences of two enti-
ties.

Boyce Codd normal form (BCNF)—A table is in Boyce Codd normal
form if and only if for every functional dependency X->A, where
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X and A are either simple or composite attributes (data items), X
must be a superkey in that table. This is a strong form of 3NF and
is the basis for most practical normalization methodologies.

candidate key—Any subset of the attributes (data items) in a superkey
that is also a superkey and is not reducible to another superkey. 

CASE tool—Computer-aided software engineering tool, a software
design tool to assist in the logical design of large or complex data-
bases. examples include ERwin Data Modeler and Rational Rose
using UML.

class—A concept in a real-world system, represented by a noun in UML;
similar to an entity in the ER model.

class diagram (UML)—A conceptual data model; a model of the static
relationships between data elements of a system (similar to an ER
diagram).

completeness constraint—Double-line symbol connecting a super-
type entity with the subtypes to designate that the listed subtype
entities represent a complete set of possible subtypes.

composition—A relationship between one class and a group of other
classes in UML; the class at the diamond (aggregate) end of the
relationship is composed of the class(es) at the small (component)
end; similar to aggregation in the ER model.

conceptual data model—An organization of data that describes the
relationships among the primitive data elements. For example, in
the ER model, it is a diagram of the entities, their relationships,
and their attributes. 

connectivity of a relationship—A constraint on the count of the
number of associated entity occurrences in a relationship, either
one or many.

data item—The basic component of a data record in a file or database
table; the smallest unit of information that has meaning in the
real world. Examples include customer lastname, address, and
identification number.

data model—An organization of data that describes the relationships
among primitive and composite data elements.

data warehouse—A large repository of historical data that can be inte-
grated for decision support.

database—A collection of interrelated stored data that serves the needs
of multiple users; a collection of tables in the relational model.
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database administrator (DBA)—The person in a software organiza-
tion who is in charge of designing, creating, and maintaining the
databases of an enterprise. The DBA makes use of a variety of soft-
ware tools provided by a DBMS.

database life cycle—An enumeration and definition of the basic steps
in the requirements analysis, design, creation, and maintenance
of a database as it evolves over time.

database management system (DBMS)—A generalized software
system for storing and manipulating databases. Examples include
Oracle, IBM’s DB2, Microsoft SQL Server, or Access.

data mining—A way of extracting knowledge from a database by
searching for correlations in the data and presenting promising
hypotheses to the user for analysis and consideration.

DBA—See database administrator.

degree of a relationship—The number of entities associated in the
relationship: recursive binary (1 entity), binary (2 entities), ternary
(3 entities), n-ary (n entities).

denormalization—The consolidation of database tables to increase
performance in data retrieval (query), despite the potential loss of
data integrity. Decisions on when to denormalize tables are based
on cost/benefit analysis by the DBA.

deployment diagram (UML)—Shows the physical nodes on which a
system executes. This is more closely associated with physical
database design.

dimension table—The smaller tables used in a data warehouse to
denote the attributes of a particular dimension, such as time, loca-
tion, customer characteristics, product characteristics, etc.

disjointness constraint (d)—A symbol in an ER diagram to designate
that the lower-level entities in a generalization relationship have
nonoverlapping (disjoint) occurrences. If the occurrences overlap,
then use the designation (o) in the ER diagram.

entity—A data object that represents a person, place, thing, or event if
informational interest; it corresponds to a record in a file when
stored. For example, you could define employee, customer,
project, team, and department as entities.

entity cluster—The result of a grouping operation on a collection of
entities and relationships in an ER model to form a higher-level
abstraction, which can be used to more easily keep track of the
major components of a large-scale global schema.
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entity instance (or occurrence)—A particular occurrence of an
entity. For example, an instance of the entity actor would be
Johnny Depp.

entity-relationship (ER) diagram—A diagram (or graph) of entities
and their relationships, and possibly the attributes of those enti-
ties.

entity-relationship (ER) model—A conceptual data model involv-
ing entities, relationships among entities, and attributes of those
entities.

exclusion constraint—A symbol (+) between two relationships in the
ER model with a common entity that implies that either one rela-
tionship must hold at a given point in time, or the other must
hold, but not both.

existence dependency—A dependency between two entities such that
one is dependent upon the other for its existence, and cannot
exist alone. For example, an employee work-history entity cannot
exist without the corresponding employee entity. Also refers to
the connectivity between two entities as being mandatory or
optional. 

fact table—The dominating table in a data warehouse and its star
schema, containing dimension attributes and data measures at the
individual data level.

fifth normal form (5NF)—A table is in fifth normal form (5NF) if and
only if there are no possible lossless decompositions into any sub-
set of tables; in other words, if there is no possible lossless decom-
position, then the table is in 5NF (see Section 6.5).

file—A collection of records of the same type. For example, an
employee file is a collection of employee records.

 first normal form (1NF)—A table is in first normal form (1NF) if and
only if there are no repeating columns of data taken from the
same domain and having the same meaning.

foreign key—Any attribute in a SQL table (key or nonkey) that is taken
from the same domain of values as the primary key in another
SQL table and can be used to join the two tables (without loss of
data integrity) as part of a SQL query.

fourth normal form (4NF)—A table is in fourth normal form (4NF) if
and only if it is at least in BCNF and if whenever there exists a
nontrivial multivalued dependency of the form X->>Y, then X
must be a superkey in the table.
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functional dependency (FD)—The property of one or more
attributes (data items) that uniquely determines the value of one
or more other attributes (data items). Given a table R, a set of
attributes B is functionally dependent on another set of attributes
A if, at each instant of time, each A value is associated with only
one B value.

generalization—A special type of abstraction relationship that speci-
fies that several types of entities with certain common attributes
can be generalized (or abstractly defined) with a higher-level
entity type, a supertype entity; an “is-a” type relationship. For
example, employee is a generalization of engineer, manager, and
administrative assistant, based on the common attribute job-title.
A tool often used to make view integration possible.

global schema—A conceptual data model that shows all the data and
their relationships in the context of an entire database.

key—A generic term for a set of one or more attributes (data items) that,
taken collectively, enables one to identify uniquely an entity or a
record in a SQL table; a superkey.

logical design—The steps in the database life cycle involved with the
design of the conceptual data model (schema), schema integra-
tion, transformation to SQL tables, and table normalization; the
design of a database in terms of how the data is related, but with-
out regard to how it will be stored.

lossless decomposition—A decomposition of a SQL table into two or
more smaller tables is lossless if and only if the cycle of table
decomposition (normalization) and the recomposition (joining
the tables back through common attributes) can be done without
loss of data integrity.

mandatory existence—A connectivity between two entities that has
a lower bound of one. One example is the “works-in” relationship
between an employee and a department; every department has at
least one employee at any given time. Note: if this is not true,
then the existence is optional.

multiplicity—In UML, the multiplicity of a class is an integer that
indicates how many instances of that class are allowed to exist. 

multivalued dependency (MVD)—The property of a pair of rows in
a SQL table such that if the two rows contain duplicate values of
attribute(s) X, then there is also a pair of rows obtained by inter-
changing the values of Y in the original pair. This is a multivalued
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dependency of X->>Y. For example, if two rows have the attribute
values ABC and ADE, where X=A and Y has the values C and E,
then the rows ABE and ADC must also exist for an MVD to occur.
A trivial MVD occurs when Y is a subset of X or X union Y is the
entire set of attributes in the table.

normalization—The process of breaking up a table into smaller tables
to eliminate problems with unwanted loss of data (the egregious
side effects of losing data integrity) from the deletion of records
and inefficiencies associated with multiple data updates.

online analytical processing (OLAP)—A query service that overlays
a data warehouse by creating and maintaining a set of summary
views (automatic summary tables, or ASTs) to enable quick access
to summary data.

optional existence—A connectivity between two entities that has a
lower bound of zero. For example, for the “occupies” relationship
between an employee and an office, there may exist some offices
that are not currently occupied. 

package—In UML, a package is a graphical mechanism used to orga-
nize classes into groups for better readability.

physical design—The step in the database life cycle involved with the
physical structure of the data; that is, how it will be stored,
retrieved, and updated efficiently. In particular, it is concerned
with issues of table indexing and data clustering on secondary
storage devises (disk).

primary key—A key that is selected from among the candidate keys
for a SQL table to be used to create an index for that table. 

qualified association—In UML, an association between classes may
have constraints specified in the class diagram.

record—A group of data items treated as a unit by an application; a row
in a database table.

referential integrity—A constraint in a SQL database that requires,
for every foreign key instance that exists in a table, that the row
(and thus the primary key instance) of the parent table associated
with that foreign key instance must also exist in the database.

reflexive association—In UML, a reflexive association relates a class
to itself.

relationship—A real-world association among one or more entities.
For example, “purchased” could be a relationship between cus-
tomer and product.
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requirements specification—A formal document that defines the
requirements for a database in terms of the data needed, the major
users and their applications, the physical platform and software
system, and any special constraints on performance, security, and
data integrity.

row—A group of data items treated as a unit by an application; a record;
a tuple in relational database terminology.

schema—A conceptual data model that shows all the relationships
among the data elements under consideration in a given context;
the collection of table definitions in a relational database.

second normal form (2NF)—A table is in second normal form (2NF)
if and only if each nonkey attribute (data item) is fully dependent
on the primary key, that is either the left side of every functional
dependency (FD) is a primary key or can be derived from a pri-
mary key.

star schema—The basic form of data organization for a data ware-
house, consisting of a single large fact table and many smaller
dimension tables.

subtype entity—The higher-level abstract entity in a generalization
relationship.

superkey—A set of one or more attributes (data items) that, taken col-
lectively, allows the unique identification of an entity or a record
in a relational table.

supertype entity—The lower-level entity in a generalization relation-
ship.

table—In a relational database, the collection of rows (or records) of a
single type (similar to a file).

ternary relationship—A relationship that can only be defined among
occurrences of three entities.

third normal form (3NF)—A table is in third normal form (3NF) if
and only if for every functional dependency X->A, where X and A
are either simple or composite attributes (data items), either X
must be a superkey or A must be a member attribute of a candidate
key in that table.

UML—Unified Modeling Language; a popular form of diagramming
tools used to define data models and processing steps in a software
application.
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view integration—A step in the logical design part of the database life
cycle that collects individual conceptual data models (views) into
a single unified global schema. Techniques such as generalization
are used to consolidate the individual data models.
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Exercises

ER and UML Conceptual Data Modeling

Problem 2-1

Draw a detailed ER diagram for an car rental agency database (e.g.,
Hertz), keeping track of the current rental location of each car, its cur-
rent condition and history of repairs, customer information for a local
office, expected return date, return location, car status (ready, being-
repaired, currently-rented, being-cleaned). Select attributes from your
intuition about the situation and list them separately from the diagram,
but associated with a particular entity or relationship in the ER model.

Problem 2-2

Given the following assertions for a relational database that represents
the current term enrollment at a large university, draw an ER diagram for
this schema that takes into account all the assertions given. There are
2,000 instructors, 4,000 courses, and 30,000 students. Use as many ER
constructs as you can to represent the true semantics of the problem. 
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Assertions: 

• An instructor may teach one or more courses in a given term
(average is 2.0 courses).

• An instructor must direct the research of at least one student
(average = 2.5 students).

• A course may have none, one, or two prerequisites (average = 1.5
prerequisites).

• A course may exist even if no students are currently enrolled.

• Each course is taught by exactly one instructor. 

• The average enrollment in a course is 30 students. 

• A student must select at least one course per term (average = 4.0
course selections). 

Problem 3-1 

Draw UML class diagrams for an car rental agency database (e.g., Hertz),
keeping track of the current rental location of each car, its current condi-
tion and history of repairs, customer information for a local office,
expected return date, return location, car status (ready, being-repaired,
currently-rented, being-cleaned). Select attributes from your intuition
about the situation.

Draw one diagram showing the relationships of the classes without
the attributes listed, then show each class individually with the
attributes listed.

Problem 3-2 

Given the following assertions for a relational database that represents
the current term enrollment at a large university, draw an UML diagram
for this schema that takes into account all the assertions given. There are
2,000 instructors, 4,000 courses, and 30,000 students. Use as many UML
constructs as you can to represent the true semantics of the problem. 

Assertions: 

• An instructor may teach none, one, or more courses in a given
term (average is 2.0 courses).
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• An instructor must direct the research of at least one student
(average = 2.5 students).

• A course may have none, one, or two prerequisites (average = 1.5
prerequisites).

• A course may exist even if no students are currently enrolled.

• Each course is taught by exactly one instructor. 

• The average enrollment in a course is 30 students. 

• A student must select at least one course per term (average = 4.0
course selections). 

Conceptual Data Modeling and Integration

Problem 4-1  

The following ER diagrams represent two views of a video store database
as described to a database designer. Show how the two views can be inte-
grated in the simplest and most useful way by making all necessary
changes on the two diagrams.  State any assumptions you need to make.
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Transformation of the Conceptual Model to SQL

Problem 5-1

1. Transform your integrated ER diagram from Problem 4-1 into a
SQL database with five to ten rows per table of data you make up
to fit the database schema. 

2. Demonstrate your database by displaying all the queries below:

a. Which video store branches have Shrek in stock (available)
now?

b. In what section of the store (film category) can you find Termi-
nator?

c. For customer “Anika Sorenstam,” what titles are currently
being rented and what are the overdue charges, if any?

d. Any query of your choice.  (Show me what your system can
really do!)

Normalization and Minimum Set of Tables

Problem 6-1 

Given the table R1(A, B, C) with FDs A -> B and B -> C:

1. Is A a superkey for this table? _____________

2. Is B a superkey for this table? _____________

3. Is this table in 3NF, BCNF, or neither? _____________

Problem 6-2 

Given the table R(A,B,C,D) with FDs AB->C and BD->A:

1. What are all the superkeys of this table? _____________

2. What are all the candidate keys for this table?  _____________

3. Is this table in 3NF, BCNF, or neither? _____________
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Problem 6-3  

1. From the ER diagram given below and the resulting tables and
candidate key attributes defined, what are all the functional
dependencies (FDs) you can derive just by looking at the diagram
and list of candidate keys?

Table Candidate Key(s)
customer cid
order orderno
department deptno
salesperson sid
item itemno
order-dept-sales orderno,sid AND orderno,deptno
order-item-sales orderno, itemno

Table FDs
customer
order
department  
salesperson
item
order-dept-sales 
order-item-sales

2. What is the level of normalization for each of these tables, based
on the information given?

Problem 6-4

The following functional dependencies (FDs) represent a set of airline
reservation system database constraints. Design a minimum set of BCNF
tables, preserving all FDs, and express your solution in terms of the code
letters given below (a time-saving device for your analysis). Is the set of
tables you derived also BCNF?

reservation_no -> agent_no, agent_name, airline_name, flight_no, 
passenger_name

reservation_no -> aircraft_type, departure_date, arrival_date, 
departure_time, arrival_time
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reservation_no -> departure_city, arrival_city, type_of_payment, 
seating_class, seat_no

airline_name, flight_no -> aircraft_type, departure_time, arrival_time

airline_name, flight_no -> departure_city, arrival_city, meal_type

airline_name, flight_no, aircraft_type -> meal_type

passenger_name -> home_address, home_phone, company_name

aircraft_type, seat_no -> seating_class

company_name -> company_address, company_phone

company_phone -> company_name

A: reservation_no L: departure_city 

B: agent_no M: arrival_city 

C: agent_name N: type_of_payment

D: airline_name P: seating_class 

E: flight_no Q: seat_no

F: passenger_name R: meal_type

G: aircraft_type S: home_address

H: departure_date T: home_phone

I: arrival_date U: company_name

J: departure_time V: company_address 

K: arrival_time W: company_phone

Problem 6-5 

Given the following set of FDs, find the minimum set of 3NF tables.
Designate the candidate key attributes of these tables.  Is the set of tables
you derived also BCNF?

1. J -> KLMNP

2. JKL -> MNP

3. K -> MQ

4. KL -> MNP

5. KM -> NP

6. N -> KP
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Problem 6-6  

Using only the given set of functional dependencies (FDs), find the min-
imum set of BCNF tables. Show the results of each step of Bernstein’s
algorithm separately. What are the candidate keys for each table? 

1. ABC -> DEFG

2. B -> CH

3. A -> HK

4. CD -> GKM

5. D -> CP

6. E -> FG

7. G -> CDM

Problem 6-7  

Given the FDs listed below, determine the minimum set of 3NF tables,
preserving all FDs. Define the candidate keys of each table and deter-
mine which tables are also BCNF.

1. ABC -> H

2. AC -> BDEFG

3. ACDF -> BG

4. AW->BG

5. B -> ACF

6. H -> AXY

7. M -> NZ

8. MN -> HPT

9. XY -> MNP

Problem 6-8 

Given the following FDs, determine the minimum set of 3NF tables.
Make sure that all FDs are preserved. Specify the candidate keys of each
table. Note that each letter represents a separate data element (attribute).
Is the set of tables you derived also BCNF?
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1. ABCD -> EFGHIJK 8. JK -> B

2. ACD -> JKLMN 9. MN -> ACD

3. A -> BH 10. L -> JK

4. B -> JKL 11. PQ -> S

5. BH -> PQR 12. PS -> JKQ

6. BL -> PS 13. PSR -> QT

7. EF -> ABCDH

Problem 6-9 

Given the following FDs, determine the minimum set of 3NF tables.
Make sure that all FDs are preserved.   Specify the candidate keys of each
table. Note that each letter represents a separate data element (attribute).
Is the set of tables you derived also BCNF?

1. A -> BGHJ 5. EB -> AF

2. AG -> HK 6. EF -> A

3. B -> K 7. H -> J

4. EA -> F 8.  J -> AB

Problem 6-10

FDs and MVDs 

Answer each question yes or no, and justify each answer.  In most cases,
you will be given a table R with a list of attributes, with at most one can-
didate key (the candidate key may be either a single attribute or compos-
ite attribute key, shown underlined).  

Given table R(A,B,C,D) and the functional dependency  AB->C:

1. Is R in 3NF? 

2. Is R in BCNF? 

3. Does the multivalued dependency AB ->>C hold? 

4. Does the set {R1(A,B,C), R2(A,B,D)} satisfy the lossless join prop-
erty? 
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Given table R(A,B,C) and the set {R1(A,B), R2(B,C)} satisfies the loss-
less decomposition property:

1. Does the multivalued dependency B->>C hold? 

2. Is B a candidate key? 

3. Is R in 4NF? 

Given a table “skills_available” with attributes empno, project, and
skill, in which the semantics of “skills_available” state that every
skill an employee has must be used on every project that employee
works on:

1. Is the level of normalization of “skills_available” at least 4NF?

2. Given table R(A,B,C) with actual data shown below:

a. Does the multivalued dependency B->>C hold? 
b. Is R in 5NF?  

R: A B C
w x p
w x q
z x p
z x q
w y q
z y p

Logical Database Design (Generic Problem)

Problem 7-1

Design and implement a small database that will be useful to your com-
pany or student organization. 

1. State the purpose of the database in a few sentences.

2. Construct an ER or UML class diagram for the database.

3. Transform your ER or UML diagram into a working database with
five to ten rows per table of data you can make up to fit the data-
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base schema. You should have at least four tables, enough to have
some interesting queries.  Use Oracle, DB2, SQL Server, Access, or
any other database system.

4. Show that your database is normalized (BCNF) using FDs derived
from your ER diagram and from personal knowledge of the data.
Analyze the FDs for each table separately (this simplifies the pro-
cess).

5. Demonstrate your working database by displaying the results of
four queries.  Pick interesting and complex queries (impress us!). 

OLAP

Problem 8-1

As mentioned in Chapter 8, hypercube lattice structures are a specializa-
tion of product graphs. Figure 8.16 shows an example of a three-dimen-
sional hypercube lattice structure. Figure 8.13 shows an example of a
two-dimensional product graph. Notice that the two figures are written
using different notations. Write the hypercube lattice structure in Figure
8.16 using the product graph notation introduced with Figure 8.13. Keep
the same dimension order. Don’t worry about carrying over the view
sizes. Assume the Customer, Part, and Supplier dimensions are keyed by
“customer id,” “part id,” and “supplier id,” respectively. Shade the nodes
representing the fact table and the views selected for materialization as
indicated in Section 8.2.4.
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Exercises

Problem 2-2
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Problem 4-1

Connect Movie to Video-copy as a 1-to-N relationship (Video-copy at
the N side); or, use a generalization from Movie to Video-copy, with
Movie being the supertype and Video-copy as the subtype.

Problem 6-1 

Given the table R1(A, B, C) with FDs A -> B and B -> C:

1. Is A a superkey for this table? Yes

2. Is B a superkey for this table? No

3. Is this table in 3NF, BCNF, or neither? Neither 3NF nor BCNF

Problem 6-3

Problem 6-5

Given these FDs, begin Step 1 (LHS reduction):

1. J -> KLMNP

2. JKL -> MNP First, eliminate K and L since J -> KL in (1);
merge with (1)

Table FDs
Level of
Normalization

customer cid -> cname, caddress BCNF

order orderno -> cid BCNF

department NONE BCNF

salesperson sid -> deptno BCNF

item itemno -> deptno, itemname, size BCNF

order-dept-sales orderno, sid -> deptno BCNF

orderno, deptno -> sid BCNF

order-item-sales orderno, itemno -> sid BCNF
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3. K -> MQ

4. KL -> MNP Third, eliminate L since K -> MNP from merged (3),
 (4) is redundant

5. KM -> NP Second, eliminate M since K -> M in (3); merge 
with (3)

6. N -> KP

End of Step 1, begin Step 2 (RHS reduction for transitivities):

1. J -> KLMNP First, reduce by eliminating MNP since K -> MNP

2. K -> MQNP Second, reduce by eliminating P since N -> P

3. N -> KP

End of Step 2 and consolidation in Step 3:

1. J -> KL

2. K -> MNQ (or K -> MNPQ) First, merge (2) and (3) for 
superkey rules 1 and 2

3. N -> KP (or N -> K)

Steps 4 and 5:

1. J -> KL Candidate key is J (BCNF)

2. K -> MNPQ and N -> K Candidate keys are K and N (BCNF)

Problem 6-7

Given these FDs:

1. ABC -> H Step 1: B is extraneous due to AC -> B in (3)

2. ACDF -> BG Step 1: EF are extraneous due to AC -> DF
in (3)

3. AC -> BDEFG Step 2: eliminate F from RHS due to 
B -> F from (5)

4. AW-> BG Step 2: eliminate G from RHS due to 
B -> AC -> G from (3) and (5)

5. B -> ACF
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6. H -> AXY

7. M -> NZ

8. MN -> HPT Step 1: N is extraneous due to M -> N in (7)

9. XY -> MNP Step 2: eliminate NP from the RHS due to 
M -> NP from (7,8) 

After Step 3, using the union axiom:

1. AC -> BDEGH Combining (1), (2), and (3)

2. AW->B

3. B -> ACF

4. H -> AXY

5. M -> HNPTZ Combining (7) and (8)

6. XY -> M

Step 4, merging: 

1. AC -> BDEFGH, B -> AC, H -> A using Rule 1 for AC being a super-
key, Rule 2 for B being a superkey, the definition of 3NF, and A
being a prime attribute. 3NF only.

2. AW->BG using Rule 1 for AW to be a superkey. BCNF.

3. H -> XY, XY -> M, and M -> HNPTZ using Rule 1 for H being a
superkey (after taking H to its closure H -> XYMNPTZ), using Rule
2 for M being a superkey from M -> H, and Rule 2 for XY being a
superkey from XY -> M. BCNF. Note: H->AXY is also possible here.

Step 5, minimum set of normalized tables:

Table 1: ABCDEFGH with superkeys AC, B (3NF only)

Table 2: ABGW with superkey AW (3NF and BCNF)

Table 3: HMNPTXYZ with superkeys H, XY, M (3NF and BCNF)
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Activity diagrams, 46–50
control flow icons, 46, 47
database design and, 50
decisions, 46, 47
defined, 34, 46
example, 49
flows, 46, 47
forks, 47–48
joins, 47, 48
nodes, 46, 47
notation description, 46–48
for workflow, 48–50
See also UML diagrams

Aggregate functions, 222–24
Aggregation, 25

composition vs., 41
defined, 25
ER model, 101
illustrated, 25
UML constructs, 41
UML model, 102

AllFusion ERwin Data Modeler, 
188–89

advantages, 211

DBMS selection, 199
ER modeling, 194
modeling support, 209
one-to-many relationships, 195
schema generation, 198
See also CASE tools

Armstrong axioms, 122–24
Association rules, 179
Associations, 37–39

binary, 38–39
many-to-many, 39
many-to-many-to-many, 100
one-to-many, 39
one-to-many-to-many, 99
one-to-one, 39
one-to-one-to-many, 98
one-to-one-to-one, 97
reflexive, 37
ternary, 39
See also Relationships

Attributes, 15–16
assignment, 19
attachment, 57
classifying, 57
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Attributes (cont’d.)
data types, 214
defined, 15
descriptor, 15
extraneous, elimination, 125
identifier, 15, 16
multivalued, 15, 57
of relationships, 17, 19
ternary relationships, 28
UML notation, 35, 36

Automatic summary tables (AST), 166

Binary associations, 38–39
Binary recursive relationships, 

90–92
ER model, 90
many-to-many, 90, 91, 92
one-to-many, 90, 91
one-to-one, 90–91
UML model, 91
See also Relationships

Binary relationships, 85–89
many-to-many, 85, 87, 89, 104
one-to-many, 85, 87, 89
one-to-one, 85, 86, 88
See also Relationships

Binomial multifractal distribution 
tree, 172

Boyce-Codd normal form (BCNF), 
107, 115–16, 118

defined, 115
strength, 115
tables, 132, 133, 144
See also Normal forms

Business intelligence, 147–86
data mining, 178–85
data warehousing, 148–66
defined, 147
OLAP, 166–78
summary, 185

Business system life cycle, 188

Candidate keys, 109, 110

Candidate tables
from ER diagram transformation, 

121–22
normalization of, 118–22
primary FDs, 119
secondary FDs, 119
See also Tables

Cardenas’ formula, 170, 171
CASE tools, 1, 187–211

AllFusion ERwin Data Modeler, 
188–89, 194, 195, 199, 211

application life cycle tooling 
integration, 202–4

basics, 192–96
collaborative support, 200–201
database generation, 196–99
database support, 199–200
data warehouse modeling, 207–9
defined, 187
design compliance checking, 204–5
development cycle, 190
DeZign for Databases, 190
distribution development, 201–2
ER/Studio, 190
introduction, 188–91
key capabilities, 191–92
low-end, 192
PowerDesigner, 188, 200, 203, 206, 

210, 211
QDesigner, 190
Rational Data Architect, 188, 189, 

193, 195, 198, 210
reporting, 206–7
script generation, 196
summary, 211
transformation table types, 192–93
value, 190–91
Visible Analyst, 190
XML and, 209–10

Chen notation, 9, 10
Class diagrams, 34–46

constructs illustration, 36
for database design, 37–43
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defined, 33–34
example, 43–46
notation, 35–37
packages, 43–46
See also UML diagrams

Classes
associations, 37
defined, 34
entities vs., 34–35
notation, 35
organization, 43

Clustering, 74–81
concepts, 75–76
defined, 74
grouping operations, 76–78
illustrated, 76
results, 81
techniques, 78–81
See also Entity-relationship (ER) 

model
Collaboration

capabilities, 200–201
concurrency control, 200
support, 200–201

Columns, 2
Comparison operators, 214
Compliance checkers, 204–5
Composition, 36–37

aggregation vs., 41
defined, 37

Computer-aided software engineering 
tools. See CASE tools

Conceptual data modeling, 3–4, 8–10, 
55–66

alternative notations, 20–22
analysis results, 142
diagram for UML, 142
emphasis, 9
notations, 21–22
substeps, 55–56
transformation to SQL, 6, 83–106
See also Data modeling

Concurrency control, 200

Constraints
foreign, 217
not null, 216
primary, 217
unique, 216–17

Data
independence, 2
items, 2
semi-structured, 209–10
summarizing, 165–66
XML, 209–10

Database design
class diagrams for, 37–43
compliance checking, 204–5
knowledge of, 11
logical, 3–6, 53–54, 139–45
physical, 1, 6–8

Database life cycle, 3–8
illustrated, 4
implementation, 8
logical design, 3–6
physical design, 6–8
requirements analysis, 3
step-by-step results, 5, 7

Database management system 
(DBMS)

DDL, 8
defined, 2
relational, 2

Databases
CASE tools support, 199–200
defined, 2
generating from designs, 196–99

Data definition language (DDL), 8, 
190, 196, 213, 215–18

constraints, 216–17
referential trigger actions, 217–18

Data manipulation language (DML), 
8, 214, 218–29

aggregate functions, 222–24
basic commands, 220–21
intersection command, 221–22
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Data manipulation language (DML) 
(cont’d.)

referential integrity, 227–28
select command, 219
union command, 221–22
update commands, 226–27
usage, 218
views, 228–29

Data mining, 178–85
algorithms, 147, 178
forecasting, 179–81
text mining, 181–85

Data modeling
conceptual, 3–4, 8–10, 55–66
example, 61–66
example illustration, 62–63, 65
knowledge of, 11

Data warehouses, 148–66
architecture, 148
architecture illustration, 150
bus, 164
CASE tool modeling, 207–9
core requirements, 149–51
defined, 148
dimensional data modeling, 

152–54
dimensional design process, 156
dimensional modeling example, 

156–65
fact tables, 154, 155
integration capabilities, 149–50
life cycle, 151–52
life cycle illustration, 153
logical design, 152–66
OLTP database comparison, 149
overview, 148–52
purpose, 155
snowflake schema, 156, 157
star schema, 154–56
subject areas, 149

DB2 Cube Views, 207
Decisions, 46, 47
Decision support systems (DSSs), 148

Denormalization, 8
Descriptors, 15
Design patterns, 204
DeZign for Databases, 190
Dimensional data modeling, 152–54

example, 156–65
process, 156
See also Data modeling

Dimensions
degenerate, 154
determining, 159

Dimension tables, 154, 160
Double exponential smoothing, 179, 

181
Drill-down, 155

Entities, 13–14
classes vs., 34–35
classifying, 56–57
clustering, 74–81
contents, 56–57
defined, 13
dominant, 78
existence, 19–20
intersection, 20
in ternary relationships, 25–26
transformation, 104
weak, 16, 103

Entity clusters
defined, 75
forming, 80
higher-level, 80
root, 75
See also Clustering

Entity instances, 13
Entity keys, 54
Entity-relationship diagram (ERD) 

notation, 194
Entity-relationship (ER) model, 9, 

13–31
advanced constructs, 23–30
aggregation, 25
AllFusion Data Modeler, 194
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application to relational database 
design, 64–66

with Chen notation, 9, 10
conceptual data model diagram, 

141
constructs, 13–22
definition levels, 9
entities, 13–14
entity clustering, 74–81
generalization and aggregation, 

101
global schema, 64–66
illustrated, 14
many-to-many binary relationship, 

87
one-to-many binary relationship, 

87
one-to-one binary relationship, 86
Rational Data Architect, 193
relationships, 14–15, 16–20, 

25–29
simple form example, 9–10
subtypes, 23–24
summary, 30
supertypes, 23–24
of views based on requirements, 

61–63
ER/Studio, 190
Exclusion constraint, 29
Exclusive OR, 29
Executive information systems (EIS), 

148
Existence

defined, 19
mandatory, 20
optional, 20, 64

Exponential smoothing, 179–80
defined, 179
double, 179, 181
triple, 180, 182
See also Forecasting

EXtensible Markup Language. 
See XML

Fact tables
defined, 154
granularity, 155
See also Data warehouses

Fifth (5NF) normal form, 127, 
133–37

defined, 133
membership algorithm satisfaction, 

134
See also Normal forms

Files, 2
First normal form (1NF), 109
Flows, 46, 47

defined, 46
guard condition, 46
illustrated, 47

Forecasting, 179–81
defined, 179
double exponential smoothing, 

179, 181
exponential smoothing, 179–80
least squares line approach, 179
reliability, 180
triple exponential smoothing, 180, 

182
See also Data mining

Foreign key constraints, 217
Forks, 46, 47

defined, 47–48
example, 48–49
illustrated, 47

Fourth (4NF) normal form, 127, 
129–33

goal, 129
tables, 131
tables, decomposing, 132–33
See also Normal forms

Functional dependence, 111
Functional dependencies (FDs)

defined, 6
in n-ary relationships, 29
primary, 118, 119
secondary, 118, 119
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Generalization, 23
completeness constraint, 24
defined, 37
disjointness constraint, 24
ER model, 101
hierarchies, 24, 57–58
UML constructs, 40
UML model, 102

Global schema, 3
Grouping operations, 76–78

application, 77–78
defined, 76
illustrated, 77
types, 77

Guard condition, 46–47

HRU, 173–75
Hypercube lattice structure, 173

IDEFIX notation, 21
Identifiers

defined, 15
internal, 16

Inclusive OR, 29
Industry Warehouse Studio (IWS), 

207, 208
Information Engineering Workbench 

(IEW), 20
Informix Data Server (IDS), 211
Intersection command, 221–22
Intersection entities, 20

Join dependencies (JDs), 133, 136
Joins, 46, 47

defined, 48
example, 49–50
illustrated, 47
SQL, 224–26

Keys
candidate, 109, 110
entity, 54
equivalent, merge, 126

primary, 42, 109
superkeys, 109, 123–24

Logical design, 3–6, 53–54
CASE tools for, 187–211
conceptual data model diagram, 

141, 142
conversion, 197–98
data warehouses, 152–66
example, 139–45
problems, 140
requirements specification, 139–40

Logical model, 6
Logical operators, 214

Mandatory existence, 20
Many-to-many relationships, 14

binary, 85, 87, 89
binary recursive, 90, 91, 92
defined, 18
transformation, 104
See also Relationships

Many-to-many-to-many ternary 
associations, 100

Many-to-many-to-many ternary 
relationships, 96, 137

Materialized views, 167
metadata, 177
selection of, 173–76

Measures, 159
Multidimensional databases (MDDs), 

151
Multiplicities

illustrated, 38
many-to-many, 39
one-to-many, 39
one-to-one, 39

Multivalued attributes, 15, 57
Multivalued dependencies (MVDs), 

127–29
defined, 127–28
inference rules, 129
nontrivial, elimination, 129
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N-ary relationships, 28–29, 92–101
ER model, 93–96
UML, 42, 97–100
variations, 92

Nodes, 46, 47
Nonredundant cover

partitioning of, 125–26
search for, 125

Normal forms
BCNF, 107, 115–16, 118
defined, 108
fifth (5NF), 127, 133–37
first (1NF), 109
fourth (4NF), 127, 129–33
second (2NF), 111–13
third (3NF), 113–15, 118

Normalization, 6, 107–38
accomplishment, 108–9
candidate tables derived from ER 

diagrams, 118–22
defined, 108
denormalization, 8
fundamentals, 107–16

Normalized tables
design, 116–18
minimum set, 127

Not null constraints, 216

Objects
constraint-related, 78
defined, 34
dominant, 78

One-to-many relationships, 14
binary, 85, 87, 89
binary recursive, 90, 91
defined, 18
See also Relationships

One-to-many-to-many ternary 
associations, 99

One-to-many-to-many ternary 
relationships, 95

One-to-one relationships, 14
binary, 85, 86, 88

binary recursive, 90–91
defined, 18
See also Relationships

One-to-one-to-many ternary 
associations, 98

One-to-one-to-many ternary 
relationships, 94

One-to-one-to-one ternary 
associations, 97

One-to-one-to-one ternary 
relationships, 93

Online Analytical Processing (OLAP), 
147, 166–78

applications, 8
defined, 166
materialized view selection, 173–76
optimization, 169, 170
overview, 169–70
query optimization, 177–78
view maintenance, 176–77
views, 166, 170–72, 178

Operations
defined, 35
notation, 35, 36

Optional existence, 20, 64

Packages, 43–46
contents, expanding, 45
defined, 43
relationships, 44

Physical design, 6–8
Physical model, 6
Polynomial Greedy Algorithm (PGA), 

174–75
PowerBuilder, 203
PowerDesigner, 188, 211

merge process, 200
plug-in to Sybase PowerBuilder, 203
reporting features, 206
XML adoption, 210

Preintegration analysis, 67–68
Primary FDs, 118, 119

candidate table, 119
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Primary FDs (cont’d.)
from ER diagram, 120
See also Functional dependencies 

(FDs)
Primary keys, 109

constraints, 217
UML constructs, 42

QDesigner, 190
Query optimization, 177–78

Rational Data Architect, 188, 189, 211
automatic computing linkages, 198
ER modeling, 193
property editing, 195
XML adoption, 210
See also CASE tools

Rational MultiSite software, 201, 202
Redundant relationships, 58–60

analyzing, 58
illustrated, 59
See also Relationships

Referential integrity, 30, 227–28
Reflexive associations, 37
Relational databases (RDBs), 150, 151
Relationships, 14–15

attributes, 17, 19
binary, 85–89
binary recursive, 90–92
cardinality, 18
connectivity, 17, 18–19
defined, 14
defining, 58–61
degree, 16–17
entity existence in, 19–20
many-to-many, 14, 18, 39
many-to-many-to-many, 96, 137
multiple, 103
names, 15
n-ary, 28–29, 92–100
one-to-many, 14, 18, 39
one-to-many-to-many, 95
one-to-one, 14, 18, 39

one-to-one-to-many, 94
one-to-one-to-one, 93
packages, 44
redundant, 58–60
roles, 15
ternary, 16, 25–28, 60–61, 92–100

Reporting, 206–7
elements, 206–7
PowerDesigner, 206
See also CASE tools

Requirements analysis, 3, 54–55
defined, 54
objectives, 55
results, 140

Requirements specification, 139–40
Reverse engineering, 6
Roles, 15
Rows, 2

Schemas
commonality, 72
comparison, 68
conceptual integration, 67
conformation, 68–69
diversity, 66
merging, 69
restructuring, 69
structural conflicts, 68, 71

Secondary FDs, 118, 119
candidate table, 119
determining, 120
from requirements specification, 

121
See also Functional dependencies 

(FDs)
Second normal form (2NF), 111–13

functional dependence, 111
tables, 112, 113
See also Normal forms

Select command, 219
Semi-structured data, 209–10
Set operators, 214
Snowflake schema, 156, 157
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Software Development Platform, 204
Specialization, 24
SQL, 213–29

advanced value expressions, 
214–15

aggregate functions, 222–24
basics, 213–29
comparison operators, 214
conceptual data model 

transformation to, 6, 
83–106

constructs, 83–85
data types, 214
DDL, 215–18
defined, 213
DML, 218–29
joins, 224–26
logical operators, 214
names, 214
null values, 84–85
object definitions, 215
referential integrity, 227–28
set functions, 214
set operators, 214
subqueries, 224–26
update commands, 226–77

SQL tables, 83, 84
with embedded foreign key, 84
from relationships, 84
with same information content, 84

Star schema, 154–56
defined, 154
dimensions, 162
for estimating process, 160
example, 154
for job costing daily snapshot, 166
for job costing process, 165
for productivity tracking process, 

163
queries, 154–55
for scheduling process, 162
See also Data warehouses

Stereotypes, 43

Subqueries, 224–26
Subtypes, 23–24

defined, 23
entities, 24
illustrated, 23

Superkeys
defined, 109
rules, 123–24

Supertypes, 23–24
defined, 23
illustrated, 23

Tables
Boyce-Codd normal form (BCNF), 

132, 133, 144
candidate, 118–22
decomposition of, 145
fourth (4NF) normal form, 131, 

132–33
merge of, 126
normalized, 6, 116–18
reduction of, 145
second normal form (2NF), 112, 

113
third (3NF) normal form, 114, 

122–27
Ternary associations, 39
Ternary relationships, 16, 25–28,

 92–100
attributes, 28
connectivity, 61
defining, 60
entities in, 25–26
ER model, 93–96
foreign key constraints and, 92
forms, 28
illustrated, 26–27, 60
many-to-many-to-many, 96, 100
with multiple interpretations, 130
one-to-many-to-many, 95, 99
one-to-one-to-many, 94, 98
one-to-one-to-one, 93, 97
requirement, 25
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Ternary relationships (cont’d.)
transformation, 105
UML, 97–100
varieties, 92
See also Relationships

Text mining, 181–85
verbatim description, 184
verbatim description information, 

184
word mapping, 184–85
See also Data mining

Third (3NF) normal form, 113–15, 
118

defined, 114
synthesis algorithm, 124–25
tables, 114
tables, minimum set, 122–27
See also Normal forms

Transformation, 6, 83–106
entity, 104
ER-to-SQL example, 105
many-to-many binary relationship, 

104
rules, 83–85
steps, 103–5
summary, 106
ternary relationship, 105

Triple exponential smoothing, 180, 
182

UML diagrams
activity, 34, 46–50
class, 33–46
conceptual data model, 142
ER models vs., 33
generalization and aggregation, 102
many-to-many binary relationship, 

89
one-to-many binary relationship, 

89
one-to-one binary relationship, 88
organization, 51
size, 50

textual descriptions, 50–51
type, 33

Unified Modeling Language (UML), 9, 
33–51

aggregation constructs, 41
defined, 33
generalization constructs, 40
n-ary relationship, 42
primary key constructs, 42
relationship types, 38
stereotypes, 43
summary, 51
usage rules, 50–51
See also UML diagrams

Union command, 221–22
Unique constraints, 216–17
Update anomaly, 112
Update commands, 226–27

View integration, 5–6, 66–74
defined, 66
example, 69–74
illustrated, 70, 71, 72–73
merged schema, 72–73
preintegration analysis, 67–68
process, 74
schema comparison, 68
schema conformation, 68–69
schema merge/restructure, 69
techniques, 69
type conflict, 71

Views, 166
coordinates of, 178
creating, 229
dynamic selection, 176
ER modeling based on 

requirements, 61–63
exponential explosion, 167–69
size estimation, 170–72
SQL, 228–29
state estimation, 170–72
uses, 228

Visible Analyst, 190
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Weak entities, 16, 103

XML, 207, 209–10
defined, 209
documents, 210
schema, 209
standards, 209
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