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ABSTRACT

ON THE INDUCTION OF DECISION TREES FOR
MULTIPLE CONCEPT LEARNING

by

Usama M. Fayyad

Chairman: Keki B. Irani

We focus on developing improvements to algorithms that generate decision trees from
training data. This dissertation makes four contributions to the theory and practice
of the top-down non-backtracking induction of decision trees for multiple concept
learning. First, we provide formal results for determining how one generated tree is
better than another. We consider several performance measures on decision trees and
show that the most important measure to minimize is the number of leaves. Notably,
we derive a probabilistic relation between the number of leaves of the decision tree
and its expected error rate.

The second contribution deals with improving tree generation by avoiding prob-
lems inherent in the current popular approaches to tree induction. We formulate
algorithms GID3 and GID3* that are capable of grouping irrelevant attribute values
in subsets rather than branching on them individually. We empirically demonstrate
that better trees are obtained. Thirdly, we present results applicable to the binary
discretization of continuous-valued attributes using the information entropy mini-

mization heuristic. The results serve to give a better understanding of the entropy



measure, to point out desirable properties that justify its usage in a formal sense,
and to improve the efficiency of evaluating continuous-valued attributes for cut point
selection. We then proceed to extend the binary discretization algorithm to derive
multiple interval quantizations. We justify our criterion for deciding the intervals us-
ing decision-theoretic principles. Empirical results demonstrate improved efficiency
and that the multiple interval discretization algorithm allows GID3* to find better
trees.

Finally, we analyze the merits and limitations of using the entropy measure (and
others from the family of impurity measures) for attribute selection. We argue that
the currently used family of measures is not particularly well-suited for attribute
selection. We motivate and formulate a new family of measures: C-SEP. The new
algorithm, O-BTREE, that uses a selection measure from this family is empirically
demonstrated to produce better trees.

Ample experimental results are provided to demonstrate the utility of the above
contributions by applying them to synthetic and real-world problems. Some applica-
tions come from our involvement in the automation of semiconductor manufacturing

techniques.
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