224

APPENDIX A

HANDLING PARTIALLY DEFINED
ATTRIBUTES

In this appendix we describe the method we adopted for handling examples that
have undefined values for some attributes. The method described in this appendix
applies to all algorithms described in this dissertation: ID3, GID3, GID3*, and O-
BTREE. The method targets handling a specific type of undefined values: partially
defined attributes. Thus it is intended for use in domains were some attributes were
not defined at an earlier stage, some training data was collected, then new attributes
were added. However, the method can be used to handle missing attribute values

for any other reason: noise, data corruption, incomplete data acquisition, etc.

A.l Introduction

In an industrial setting, process data gets collected over time. The engineer
first decides what data to collect (what attributes to measure) and then begins
recording the results of experiments. However, at some later time, the engineer may
realize that additional attributes should be recorded as well. Typically, increased
familiarity with a set of experiments results in the discovery of new (possibly more
relevant /important) attributes. This results in a nonhomogeneous collection of data
points in which the earlier data points have undefined values for the attributes that

were collected later.

225

One approach to deal with such data is to discard older data points and keep
only the completely defined data. However, this is wasteful since it results in the
total loss of information contained in earlier experiments. Furthermore, it may be
the case that experiments are expensive or time consuming making it undesirable
to repeat the older experiments to get the values of the new attribute(s). Another
approach would be to use the entire data but ignore the new attributes. However,
this would be counterproductive since it ignores the information contained in the new
attributes: the engineer must have had good reason to start recording the values of
the new attributes.

Having ruled out the two simple approaches we are left with only one option:
modify the learning algorithm so that it can deal with partially defined attributes. We
would like the learning algorithm to use the new attribute whenever that is necessary
or appropriate. Furthermore, as more “new” data is collected, the algorithm should
start ignoring older data (again when necessary and appropriate). Below we discuss

different possible approaches to this problem and the approach we decided to adopt.

A.2 Possible Approaches

There are three issues that need consideration when changing a tree generation
algorithm to make it capable of handling partially defined attributes. We need to

decide what is to be done when
1. evaluating the attribute for selection for branching at a node,

2. partitioning the data along the branches if a partially defined attribute is se-
lected, and

3. classifying a test example at a node that tests on the value of a partially defined

attribute.

The problem we are addressing is a special instance of the general problem of
partially defined attributes. It differs in that future examples that are to be classified

using the generated decision tree will have all their attribute values defined. This is

226

due to the fact that once an attribute is defined, all examples collected in the future
are assumed to have a value for that attribute. Consequently, we do not have to
address issue 3 above. This further specifies and simplifies the problem at hand. In
our case we only anticipate encountering undefined attribute values in the training
set. If, when using the tree to classify test examples, we attempt to test the value of
an attribute that is not defined, we simply fail to classify it. Other approaches for

dealing with such a situation more effectively are described in [95].

A.2.1 Attribute Evaluation

We first list possible ways of dealing with a partially defined attribute during the
attribute evaluation stage of the algorithm. We discuss the problems with each of

the methods in Section A.2.3 below.

A. Ignore examples with undefined values when evaluating the undefined attribute.
The merit of an attribute is then evaluated based only on the subset of examples

for which the attribute has a value.

B. Fill in the values of the attribute for the examples that have that value missing.
Essentially the algorithm tries to “guess” what the missing values should be. In
this case, statistical methods could be employed to estimate the missing values.
Alternatively, one could create a learning subproblem to determine the missing
values. In this case, the set of examples whose values are defined are used as a
training set to generate a tree for predicting the values of the partially defined
attribute. The tree is then used to predict the missing values on the remaining

subset of examples.

C. Perform A above but then reduce the gain measure assigned to the attribute to
reflect the fact that the gain was based on a subset of the data and not the
entire set. The attribute is thus “penalized” because it ignores some of the

information available in the data.

D. Create a separate branch for undefined values of an attribute.

227

E. Consider a partially defined attribute at a node only if all the examples at the
node have defined values for the attribute. This excludes the partially de-
fined attribute from consideration at the root node, and may exclude it from

consideration at all nodes in the tree (depending on the data).

A.2.2 Partitioning Data when Branching

Once we decide on a method for evaluafing the attributes (including the partially
defined attributes) at a node, we have to decide how the data is to be partitioned
along the branches created for the various values of the selected attribute if it is

partially defined on the data. We list possible methods to achieve this:

A2. Discard the examples that have undefined values for the chosen attribute (the

analogue for A above).

B2. “Guess” what the value of each example should be and move each example

along the matching branch (the analogue of B above).

D2. Move all undefined examples along an undefined branch (this is only applicable

in case D above).

F2. Move each example whose value is undefined for the selected attribute along

each branch out of the node.

A.2.3 Discussion of Various Methods

Simply ignoring the examples with undefined values, as suggested in A, is not valid
because this will bias the algorithm towards the new attributes while disregarding
the information available in the older data. Method B (and similarly B2) is both
unpredictable and may introduce errors in the data. An incorrect guess for a value
of an attribute may result in changing the resulting tree dramatically. Method D
(and similarly D2) is not suitable in our case because undefined examples will never
be encountered when the tree is used to classify future examples. Thus branches for

undefined values will simply never be used. Method E is reasonable but essentially

228

prevents the algorithm from using new attributes at the higher levels of the tree.
Furthermore, there may be cases when all nodes in the tree will get a few undefined
examples. In this case method E will cause the algorithm to completely ignore the
new attributes. Finally, method F2 attempts to maximize the usage of all available
information, however it overdoes this. By moving undefined examples along all
branches, the tree is likely to grow much larger and the likelihood of making erroneous
classification increases.

It is preferable to use a conservative strategy (one that ignores some information
but does not actively introduce errors) rather than using a risky method that uses
more information. We therefore decided to adopt a modification of the C-A2 method.

We justify this choice in the next section.

A.3 The Adopted Approach

After considering the different methods, we decided to use method C for attribute
evaluation and method A2 for partitioning the examples along the branches. Method
C prescribes that the attribute be evaluated based only on the subset of examples
that have defined values for the attribute. The merit assigned to the attribute is then
reduced to reflect the fact that some examples were ignored during the evaluation.
We decided to reduce the merit by the percentage of examples that were ignored
(i.e. the proportion of examples that have undefined values for the attribute). This

method intuitively achieves the desired goals:

1. It discourages the algorithm from using the partially defined attributes when
the proportion of undefined examples is high (i.e. when the proportion of
examples for which the new attribute was recorded is low). The partially
defined attributes will thus tend to appear only towards the lower portion of

the tree.

2. As the number of new examples grows, the bias against using the partially

defined attributes at the higher levels of the tree diminishes. Eventually, the

229

algorithm will essentially exhibit no bias towards avoiding the “new” attributes

at the root.

3. The information included in the old examples is not ignored since they serve
to penalize the new attribute. At the same time, the other (old) attributes are

evaluated based on the information available in both the old and new data.

Method A2 for handling the examples that are undefined for the selected attribute

was chosen because:

1. Ignoring the undefined examples is the most conservative strategy. It does
ignore information but that price is paid only when the new attributes are
favoured by the selection (merit) measure to the extent that they overcome the

penalty incurred on them.

2. As more “new” examples are collected, and the algorithm begins to select
the partially defined attributes towards the higher levels of the tree, the al-
gorithm essentially begins to ignore older examples. Eventually, old examples
will naturally get completely ignored. This is a desirable feature since we want
the learning algorithm to “focus” more on the completely defined (newer) ex-
amples as their number grows much larger than the (partially defined) older

examples.

A.3.1 Requirements of the Method

An undefined attribute value must appear as a ‘?’ for either discrete or continuous-
valued attributes. The users have therefore to make sure that ‘?’ is not an actual
value in the range of a nominal attribute.

As defined, the method assumes that the merit assigned to each attribute in
preparation for attribute selection is non-negative and that a higher value implies
better merit.

Assume that the algorithm is currently evaluating the attributes at a node con-

taining a set S of examples. Assume that attribute A is being evaluated and that

230

some of the examples in .S have undefined values for A. The algorithm first takes the
subset S” of S’ consisting of all examples that have defined values. The proportion
of defined examples at the node, for attribute A is

5]
= <1.0
S|

r will be the penalty by which the merit of A will be reduced later. In case of ID3,
GID3, GID3*, and ID3-BIN the merit is the information gain. In case of ID3-1V,
it is the gain ratio and in the case of O-BTREE it is the ORT measure. Since we
have removed some examples of S to get S’, we check to make sure that the set S’
contains examples of more than one class. If all the examples in S’ are of one class
then attribute A is of no use to us and we should exclude it from consideration for
branching.

Once a partially defined attribute is chosen for branching at a node, the examples
at the node having undefined values for that attribute are discarded and will never
appear in the subtree under the node. This is the only point where the algorithm
discards information. However, this is the only conservative option at this point.

For a more detailed discussion of this method and for an example on partially
defined data obtained from Hughes, the reader is referred to [26]. The description in
this appendix is intended to serve as documentation for the experiments conducted

in this dissertation.

231

APPENDIX B

ENTROPY AND REFINED PARTITIONS

In this appendix we prove that if attribute A induces a partition 7; on a data set
S,
T = {51,52,...,5«,-}

and attribute A’ induces the partition 75 on the same data set S:
w2 = {51, 5355 Si}

then if 5 is a refinement on 7, the information gain of A’ will be the same or higher
than Gain(A, S).

We shall assume that S consists of N = |S| examples of k classes. Recall by the
definition of Gain in Equation 4.2

Gain(A, S) = Ent(S) — E(A,S).

Since the class information entropy of S, Ent(S) is a constant for fixed S, all we have

to establish is the following lemma:

Lemma B.0.1 If the partition induced on S by attribute A’ is a refinement of the

partition induced on S by attribute A, then

Ent(A',S) < Ent(A,S).

232

Proof: Let m; be
T = {S],Sz, o 4 .,S.,-}.

Since 7, is a refinement of 7, we can rewrite 7, as

g = {511, .o .,51,11,521, .o .,3212, S.,-l, .o .,S,-]r}

for some appropriate [; > 1, 1 < i < r, where for each ¢,

Thus the S;; partition the subset S;. Now,

E(4,5) = i:IJ%[Ent(Si)
E(AI,S) = ZZ'SUl

To prove the lemma, all we need to show is that for each 7,1 < ¢ < r,
li
2 IS5|Ent(S;;) < [SifEnt(S5).
et

Equivalently, we need to show that for each z,

li
Ent(S, Z Sis| Ent

However, this follows immediately by Lemma B.0.2. O

To proceed further, we need to introduce some notation. Given a data set S of
training examples from k classes and an attribute B with values {b;,b,...,b.}. The
attribute B induces the partition {S;,S5,,...,S5,} on S, where each S; C S consists
of examples in S that have value B; for B. We shall use P(C;), i = 1,...,k to denote
the proportion of examples in S that have class C;. This may also be thought of as
the “probability” of coming across class C; in S. Similarly, we use P(b;) to denote
the proportion of examples in S that have value b; for B, i.e.,

1551

P(b;) = 2.

233

We use P(C|b;) to denote the proportion of examples in S; that have class C;. This
can be thought of as the probability of coming across class C; given that B = b, (the
conditional probability of C; given B = b;). Finally, we define P(C;,b;) to be the
proportion of examples in S that have class C; and value b; for attribute B. Thus,
it may be thought of as the joint probability of the class being C; and the value of
B being b; for an example in S. We denote the number of examples in S that have

class C; and B-value b; by ¢;;. Hence,

G _Gj
S|~ N

As a consequence of these definitions, we have

P(Ci, b)) =

Cij

|55
Cij/N

|S;|/N

P(C;, b;)
P(b;)

which means that we can use the definition of Bayes’ rule without problems. Using

P(Cilb;) =

this notation, we can rewrite the definition of F(B, S) as follows:

E(B,S) = }E%Em(sj)

= ZP)Ent(S

k

= L P;) | S -P(Cily) ogs (P(Cl)

Fact 2 For any real number z > 0, In(z) < (z — 1), where In(z) denotes the natural

logarithm of z, i.e.,

Lemma B.0.2 For any training set S and attribute B with values {by,...,b,} the

information gain of B with respect to S, Gain(B, S) is non-negative:

Gain(B, S) = Ent(S) — E(B,S) > 0.

234

Proof: Using the above notation, we need to show that

Gain(B,S) = Ent(S) E(B,S)

= - Z P(C;)log, (P Z P(b;)Ent(S

_ (e 1og2()+ip [zpcu» Jlog, (P (Cilbj))]
0.

IV

Further manipulation of the latter expression for Gain, applying Bayes’ rule, and

merging the summations we get

Gain(B,S) = ;P(Ci)logz (P(IC,)> +j;P(bj) [; P;C(';),jl)’J)]ogz (P(Czlbj))}
_ ;P(C,)logz <p(la->> +§;P(a,b])1ogz (P(C:lby))
= ;é [P(C,,b])log2 (P(la)) +P(C;, b;) log, (P(Cilb;))]
::gg?WMm%%%ﬁgv
- 1og21 ZEP ks (Pl(jfclb))>

Let us examine the quantity —Gain(B, S),

. I i P(Cilb;)
_Gazn(B, S) = —10g2 (C) ;;P(Ou bj)ln <W>
5 r k P(Cz)

5 22 P(Cib)In (P(albj))

Using Fact 2, and substituting In (%é%f—) by its larger couterpart we get
J

—Gain(B,S) <

ZZPC,,b(P(C:) 1)

10g2 =11=1 (Cl)
- (COP(b)
- = 22”“’” (P(%) 1)
1 r k

log, (e
=).

Which gives us the desired result of Gain(B,S) > 0.

