CHAPTER 1

INTRODUCTION

“Where shall I begin, please your Majesty?”, he asked.
“Begin at the beginning” the King said gravely,
“and go until you come to the end: then stop.”

C.L. Dodgson, 1865
(alias Lewis Carrol)
Alice’s Adventures in Wonderland, Ch. 12.

What is this dissertation about? The short answer is that it is about the quest
for “better decision trees.” The long answer requires some context and quite a bit of
elaboration. This work falls in the area of machine learning, a subfield of artificial
intelligence (AI). We shall not concern ourselves with what machine learning exactly
means since that question does not have a clear answer. Among the many attempts
to address this issue is one by Simon [113]. In his attempt to define the process of

learning, Simon states that

...learning denotes changes in the system that are adaptive in the sense
that they enable the system to do the same task or tasks drawn from the
same population more efficiently and more effectively the next time.

(p. 28)

Scott [107] points out that this is only a functional definition in the sense that it
does not define learning by how learning takes place, rather, it defines learning by

what learning achieves. Scott characterizes learning as

...the organization of experience... Learning is any process through
which a system acquires synthetic a posteriori knowledge. (p. 360)

Any definition of a general purpose learning algorithm is bound to have problems
since our notion of “general purpose” is roughly equivalent to “human-like.” As
fascinating as the latter may be, it is not (yet) a well-understood entity.

Since this dissertation does not aim to discuss “general purpose” learning ma-
chines, we adopt a simple definition that describes a narrower class of “learning”
machines. For the modest purposes of this dissertation, the following statement

captures the behaviour of what we would describe as a learning machine:

A learning machine is a machine that is capable of improving its per-
formance on a specific task over a finitely bounded period of time as it
interacts with its environment.

Thus, the “learning,” whatever it is, is in the eye of the beholder. Note that we
are narrowing down the definition by fixing the task of the learning machine and
bounding the time it takes it to learn. For now, we leave open what “interaction
with the environment” means. We shall quantify the notion of “improvement in
performance,” and restrict the time scale needed to achieve the improvement later in
the chapter. Although lacking in preciseness, the definition is, nevertheless, sufficient
to convey what we mean in an intuitive, informal sense. All the informal notions
will be made precise as we define our learning task exactly. Whatever changes take
place inside the learning machine that enable it to “improve” its performance are
referred to as “knowledge about the task within the context of the environment.” In
this sense, learning is basically the acquisition of “knowledge.”

There are two fundamental reasons for studying the process of learning. The first
targets understanding the process of learning as manifested in humans. This relates
to the age-old question regarding the nature of human knowledge: what is knowledge,
and how is it acquired? The question is deeply rooted in philosophy, starting with
Plato, and is a major theme of today’s psychology. As part of their quest to gain
insight and understanding into human learning, some researchers attempt to endow a
machine with the ability to learn. This places special constraints on the approaches
they may adopt since the learning mechanism they adopt must be physically and

psychologically plausible in human beings. For example, we do not generally expect

that a human being stores a detailed database of all previous experience and performs
a fast search for nearest matches each time a decision needs to be made. The data
are simply too voluminous to be stored completely in “raw” format.

Another reason for studying learning is derived strictly from a mechanization
perspective—the quest for endowing machines with the ability to make intelligent de-
cisions autonomously. One goal of machine learning, then, is to enable computers to
modify their own behaviour and acquire usable and useful knowledge autonomously
as an alternative to being strictly programmed by humans. Usable knowledge refers
to knowledge that is not too costly to store in terms of space, and not too costly to
retrieve in terms of time. Useful knowledge is knowledge that leads to improvement
in performance. In this case, the feasibility of the learning mechanism as a candidate
human learning mechanism is not an issue. The goal is to enable a machine to learn
since learning is considered an important aspect of intelligence. The quest is for a
machine that can be considered “intelligent” by human observers (who are presumed
to be “intelligent” themselves). In this case, the important factor is computational
feastbility: human learning is of interest only to the extent that it may give insights
into what is computationally feasible.

The approach taken in this dissertation falls under the latter category. Given
a learning task that is performed by human beings, and that appears to be an
important aspect of intelligence, can we devise an algorithm to perform that task on
a computer? The computational feasibility issue adds one further restriction on the
algorithm: it must have polynomial complexity. Our focus, then, is to precisely define
a task that is generally considered “intelligent,” to show that it can be performed by
an algorithm of polynomial complexity, and to investigate possible ways to improve
our algorithm’s performance. The task we are concerned with is an instance of
induction, generally referred to as learning from ezamples. Essentially, the goal is
to discover compact patterns in large training data sets in order to summarize the
latter in a useful form—a structure or a classification scheme. This structure, then,
represents knowledge about the data. As such, the work described in this dissertation

falls under the category of automated knowledge acquisition. We are concerned

with learning a scheme to classify future examples, a classifier, from training data
consisting of previously classified examples.

In particular, this dissertation is concerned with studying the problem of inducing
classifiers in the form of decision trees. The results derived in the later chapters are
primarily intended to provide means for improving important aspects of top-down,
nonbacktracking, decision tree generation algorithms. Some of the formal results
derived are generally applicable to classification algorithms, others formally answer
questions about decision tree classifiers; e.g., when can we claim that one decision
tree is better than another?

The main importance of this venue of work is its potential for mechanizing “knowl-
edge” extraction from data. Rather than relying on manually encoding knowledge in
a program or an expert system, the machine learning approach attempts to circum-
vent the difficulties (to be elaborated in the next section) of the manual encoding
approach by extracting classification rules from data directly. The training data
consist of descriptions of certain situations or states along with a record of the (in-
telligent) action taken by a human expert in that situation. In general, the action
or outcome associated with a situation can be any event that we are interested in
predicting. The idea is to attempt to capture the general and appropriate conditions
under which certain outcomes should occur. Rather than require that a domain
expert provide domain knowledge, the learning algorithm attempts to discover, or
induce, rules that emulate expert decisions in different circumstances by observing
examples of expert tasks.

Let us begin by motivating the general topic addressed by this dissertation. Read-
ers who are familiar with all the reasons that make a machine learning approach im-
portant and sometimes essential may proceed to Section 1.2 where we define the basic
notions: learning problem, multiple concept learning, training data, decision trees,
etc. Those who wish to bypass the basic definitions may proceed to the statement

of research goals in Section 1.4.

1.1 Motivation

One of the goals of Al research is to provide mechanisms for emulating human
decision-making and problem solving capabilities, using computer programs. The
first “popular” Al attempts at such systems appeared as part of the technology
known as “expert systems.” Expert systems are intended to provide the means of
encoding human knowledge about a specific task in terms of situation-action rules.
The idea is that if such systems are endowed with sufficient knowledge of the task
at hand, they may be able to emulate human expert behaviour in most, if not all,
situations that arise during task execution. The traditional approach to constructing
expert systems relies on interviewing domain experts. Since domain experts are not
expected to be programmers, a programmer (usually called a knowledge engineer),
sometimes with the aid of individuals that are skillful at conducting interviews,
essentially asks the domain expert to describe how and why expert decisions are
made under various circumstances. The knowledge engineer is supposed to encode
the information obtained from interviewing in the form of executable programs of
if-then rules. We refer to this process as: manual knowledge acquisition.

Even with such a constrained and narrow goal, serious difficulties arose that
hindered the development of successful expert system applications [76]. Prominent
among these difficulties is one referred to as the “knowledge acquisition bottleneck”
[28]. Human experts find it difficult to express their knowledge, or explain their ac-
tions, in terms of concise situation-action rules. If pressed to do so (sometimes under
intense interrogation), they often produce rules that are incorrect, or that have many
exceptions. The articulation of specific intuitive knowledge into deterministic rules is
a difficult, sometimes unrealistic, problem for human experts. Interviewing domain
experts to extract such knowledge is also an expensive process demanding time from
experts and knowledge engineers. In addition, it is a difficult and often frustrating
process for the domain experts involved. Industrial diagnostic expert systems typ-
ically require a long development time. Though the extraction of knowledge from

domain experts was initially identified as a bottleneck in the process of developing an

expert system, it is currently believed to be a “major hurdle” as well as an “onerous
process” by most [17].

A second problem arises in a different situation: What if a task is not well-
understood, even by the experts in that area? An example of this situation is mani-
fested in our experience with the automation of the reactive ion etching (RIE) process
in semiconductor manufacturing [51, 52]. In such domains, abundant data are avail-
able from the experiments conducted, or items produced. However, models that
relate how output variables are affected by changes in the controlling variables are
not available. Experts strongly rely on familiarity with the data and on intuitive
knowledge of such a domain. It is an often accepted hypothesis in the “manual
knowledge acquisition” literature that experts “work in shallow mode” [15]. That
is, experts are able to make good decisions at the level of individual cases, but are
unable to answer general questions about the data (i.e., provide useful rules) [15].
How would one go about constructing an expert system in such circumstances?

Two additional factors promote the case for the machine learning alternative to
the manual construction of expert systems. The first is the growing number of large
databases that store instances of diagnostic tasks. Such data are typically accessed
by keyword or condition lookup. As the size of the database grows, the keyword
lookup approach becomes ineffective. Suppose an expert needs to refer to previously
diagnosed cases similar to a case currently being diagnosed. A query may easily
return hundreds of matches, making it difficult for a human expert to make a decision
based on the query. A method for automatically determining relevant conditions to
make the “proper” query would be needed in this case. Databases containing large
amounts of examples defy human analysis and induction capabilities. In addition, a
high level of expertise is required to fully exploit such knowledge and infer important
patterns from it. This creates an important, and as of yet unfulfilled, niche for
machine learning techniques. Examples of earlier successes in this area, which also
serve as motivation for us, are cited in the next section.

Another motivation is the evolution of complex systems that have an error detec-

tion capability. Telephone and computer communication networks are an example

[120]. Faults are detectable by the network hardware. Several thousand faults may
occur during a day. To debug such a network, a human would need to sift through
large amounts of data in search of an underlying cause. An automated capability
of deriving conditions under which certain faults occur may be of great help to the
engineer in discovering underlying problems in the hardware.

Both of the above situations indicate a need for a method to summarize large
amounts of data effectively. Machine classification learning is a potential answer. If
successful, a machine learning approach provides a potential partial solution to the

problem of extracting knowledge from domain experts:

Do not attempt to get it from experts in the first place! Avoid inter-
viewing experts whenever possible and get whatever knowledge you can
directly from the data.

Of course, the knowledge extracted from the data may be incorrect since it is pro-
duced by induction. However, rules extracted from human experts do not come with
a guarantee of correctness either. Another side benefit for using machine learning
is the possibility of discovering patterns not known to experts. An example of this
occurred when we applied our learning algorithms to data obtained from Hughes
Microelectronics Center from a reactive ion etching (RIE) process for manufacturing
semiconductor wafers. The experts strongly disagreed with the derived rules. Some
of the rules were making predictions that were “clearly wrong” from the process en-
gineer’s point of view. Later, it was discovered that the wafer etcher being used had

a leak in one of the gas supplies, and that caused it to behave abnormally [26].

1.1.1 Earlier Successes

To illustrate the potential for success of inductive learning, we cite two exper-
iments in diagnostic knowledge base construction and an experiment in database
compaction. An additional successful application in astronomy by Cheeseman’s AU-
TOCLASS system [10] is discussed later in Section 2.2.

The first experiment was conducted by Michalski et al [69, 71]. A database of

examples of soybean diseases was used by a learning program, AQ11, for generating

diagnostic rules. At the same time, a team of knowledge engineers consulted with a
human expert in constructing classification rules for the same set of examples. The
program-generated rules outperformed the expert’s rules in diagnosing unseen data
[69].

The second experiment followed the same approach using a different program and
a different domain. In this case, Quinlan’s ID3 [92] algorithm for generating deci-
sion trees, which forms the starting point for the work described in this dissertation,
was applied to a diagnosis task in a medical hemotology domain. ID3 quickly pro-
duced a classifier that outperformed an expert system developed using the traditional
knowledge acquisition approach of interviewing experts [84].

Finally, Mozetic [83] applied The NEWGEM system to a medical knowledge base
consisting of over 5000 examples of ECG multiple heart disorder cases. He was able

to shrink the knowledge base down to 3% of its original size, making its use in the

field possible.

1.2 Learning from Examples

We focus on the problem of learning classification schemes from instances of
examples with known classifications (training data). In classification learning, the
goal is to induce a classifier, or classification scheme, that can be used to predict
the classes to which future unseen examples belong. Classification is considered one
of the intelligent activities performed by humans. It is a prerequisite of symbolic
reasoning since it provides the building block for abstraction. Almost all human
decision-making functions can be viewed as classification tasks of some sort. A
decision is usually a choice of one of a fixed set of options or actions. The state of the
environment at the time the decision was taken is said to satisfy the conditions under
which the decision is considered appropriate or correct. The problem of classification
is to discover these conditions (or a good approximation to them). We shall shortly
provide a formal statement of the problem and the desired solution.

The state of the environment is typically encoded in terms of a predetermined

set of attributes. An attribute may be continuous (numerical) or discrete (nominal)
valued. For example, a nominal attribute may be shape with values { square, triangle,
circle}. An example of a continuous attribute is pressure or temperature. The range of
such an attribute is the reals, rationals, integers, or any set on which a linear ordering
can be imposed. Note that the term continuous-valued is used in the literature even
if an attribute is integer-valued (e.g. [92]). We use the term in this overgeneral sense
as welll.

In classification, the classes are required to be discrete. If the classes are con-
tinuous, then the problem becomes a regression problem [5]. An example class may
be an action taken during the control of a process, e.g. raise temperature or lower
pressure, or some decision such as diagnosing a fault, etc.

A training example consists of a description of a situation and the action per-
formed or decision taken in that situation. The situation is described by listing the
values of all the attributes. The action associated with the situation, the class to
which the example belongs, is a specification of one of a fixed set of pre-determined
allowed actions. The class of each training example is typically determined by a
human expert during normal execution of some task.

The goal of the learning algorithm is to derive conditions, expressed in terms
of the given attributes, that are predictive of the classes. Such rules may then be
used to classify future examples. Of course, the quality of the rules depends on the
validity of the conditions chosen to predict each action.

Given a set of training examples, the training set, it would be desirable to induce
a minimal sét of mazimally general rules that correctly classify the examples. The
importance of generality of the rules lies in increasing their predictive power over
sets of unseen examples. This has been the prevalent goal of research in machine
learning and pattern recognition. The question of whether it is justified to search
for compact classifiers will be dealt with in Chapter III. In fact, we show that the
more “compact” a classifier is, the more likely it is that the predictions it makes are

“correct.”

1A more appropriate name would be ordered attributes as used in [5].

10

Table 1.1: A Simple Training Set of Examples.

example | selectivity | A line width class
e-1 normal normal power is high
e-2 normal high power is low
e-3 high high power is low
e-4 high low power ts high
e-H low normal flow rate is low
e-6 low - high flow rate is low

To illustrate the discussion so far, we include an example training set.

Example 1.2.1

The simplified small example set shown in Table 1.1 consists of six examples e-1
through e-6. There are two attributes: selectivity and A line width. The attributes
can take the values low, normal, and high. There are three classes: flow rate is low,
power is low, and power is high. Note that this is only an illustrative simplification.
Typically, the number of examples of a meaningful training set is at least in the

hundreds, while the number of attributes is usually in the tens.

A classification rule for predicting a class consists of a specification of the values
of one or more attributes on the left hand side and that class on the right hand side.

A simple rule consistent with the training set of Example 1.2.1 may be:

IF (selectivity = low) THEN flow rate is low

1.2.1 Multiple Concept Learning

Concept learning refers to the mechanized induction of a classification scheme
from a set of training examples. We refer to it as “induction” because the generated
classifier is expected to capture generalized patterns from the data. Therefore, it
should be capable of classifying future examples that have not appeared in the train-
ing data. Historically, the term concept learning has been used to describe learning
a single concept [20, 45, 91, 128, 133]. In this case, the training data have only two

classes. An example is either positive, meaning it is an example of the concept to be

11

learned, or it is not. A large body of the literature in machine learning and pattern
recognition deals with the binary class problem. Multiple concept learning refers to
concept learning when there are two or more classes in the data. We are concerned
with the general problem where the number of classes is arbitrary (but of course
finite).

Let A be the set of attributes. Assume there are m attributes; so A = {A;,..., A, }.
We denote the range of an attribute A; € A by Range(A;). If A; is discrete, then

Range(A;) = {aj1,a52,...,a;,}
and if A; is continuous-valued, then, in general,
Range(A;) C R.

Let C be the set of k classes, C' = {C},...,Ci}. An ezample is an m-tuple belonging
to the space
ZZ Range(A;)

=]
where x denotes the cross product operation on sets. We denote the set of all possible

examples by E. A training ezample is an example with a class label. Thus, a training

example is an m + 1-tuple of the form
(’01, V2y.-.,Unm; CJ),

where each v; € Range(A;) is one of the values of the attribute A;, and C;eCis
one of the k classes. In general, we use the term “example” to refer to examples or
training examples. It is usually clear from the context which we mean. Also note
that the class is simply one of the discrete attributes that has been distinguished a
priori.

Each example is assumed to be a member of exactly one of the k classes. The
class to which an example e belongs is denoted by Class(e). Thus, another way
of referring to a training example is by the notation (e;Class(e)), where ¢ is an
example (m-tuple). Given a set of N training examples TE = {ej,es,...,en}, it

may be partitioned into the sets:

E; = {e € E|Class(e) = C;} e=1. .k

12

such that £y U E,U...U Ey =TE, and for all 7,7 such that : # j

E,-ﬂEjz(O

Definition 1.2.1 A classifier CL is a function that assigns a class to an example:

CL :E—C.

Hence, a classifier takes an m-tuple of attribute values, i.e., an (unclassified)
example (or the first m components of a classified example), and assigns a class to it.
Such classifiers are also known as absolute classifiers since they predict with absolute

certainty as opposed to probabilistic classifiers:

Definition 1.2.2 A Probabilistic Classifier PCL is a function that predicts the

classification of examples: PCL : E — p, where p C [0, 1]*

k
pP= {(pl’P% S ,Pk>|zpz’ = 10}
1=1

The k-tuple (p1,p2,...,pk), called the prediction vector of PCL for a given ex-
ample, is interpreted as the confidence vector for the k classes. Thus p; € [0,1]
represents the confidence of the classifier that the example belongs to class C; € C.
The class of absolute classifiers is a subclass of the class of probabilistic classifiers.
An absolute classifier is a probabilistic classifier that for any example, the prediction
vector output is such that for some :,1 <: < k, p; = 1.

If a classifier is probabilistic, then typically a scheme is employed to extract a
single absolute classification from each prediction made. The simplest method is to
take the class with the highest confidence as the class predicted. Thus a probabilistic
classifier PCL along with a decision strategy that maps the prediction vector to a
single class prediction are equivalent to an absolute classifier, C'L. Since the goal of
a classifier is to make a decision regarding the class of an example, we consider the
decision strategy employed to extract an absolute classification from a probabilistic

one to be part of the classifier itself. Henceforth, we shall use the term classifier, or

13

CL, to denote an absolute classifier or a probabilistic classifier coupled with some
decision strategy.

The (absolute) classifier C L may take any desirable form: a set of diagnosis rules,
a decision tree, a classification hierarchy or graph, etc. If for an example e € E, the
classifier C'L classifies e in some class C'L(e), then we say that the classification is
correct iff CL(e) = Class(e). If the classification of e is not correct, we say that C'L
has misclassified example e. '

Note that the function Class defined above is an example of a classifier. Class is
a special classifier that always returns the “true” class of any example. This means
that we are implicitly assuming that examples in the training set are noise free, i.e.,
the class label is the correct label given the attribute values (see definition of training

set above).

1.2.2 The Multiple Concept Learning Problem

We are now ready to define exactly what we mean by a learning problem. We

focus on two particular types of learning problems.

Learning Problem PE : Given the learning task (A,C,TE), where A is a set
of attributes, C a set of classes, and T'E a set of training examples drawn ac-
cording to some fixed probability distribution on E, find a classifier C L such

that for any e € E, drawn according to the same probability distribution,
Prob{CL(e) # Class(e)}

1s minimized.

This type of learning problem specifies that the goal is to find the classifier that
minimizes the probability of classification error. If the joint probability distribution
of E and C is completely known, then the theoretical solution to the problem is
known. The solution has been known for a couple of centuries now and was originally
derived by Thomas Bayes in the 1700’s [2]. However, in real life, the distribution on

the examples is typically unknown. In this case, no known method exists for finding

14

the “optimal” classifier. We discuss the PE learning problem further in Chapter II.
A relaxed version of this learning problem was formulated by Valiant [126] and is
known as Probably Approximately Correct (PAC) learning problem. We shall discuss
the PAC learning problem further in Chapter II.

Learning Problem CX : Given the learning task (A,C,TE), where A is a set
of attributes, C' a set of classes, and T'E a set of training examples drawn

according to some fixed probability distribution on E, find a classifier C'L
such that for all e € TE,

CL(e) = Class(e),

and such that the size complezity of C'L is minimized.

The size complexity is measured by some syntactic measure of the size of the
representation of C' L. For example, how many bits are required to encode CL.

In the CX learning problem, the goal is to find a minimal size classifier that
correctly classifies the training set. Finding this minimal classifier can be shown to be
equivalent to the multiple-valued logic minimization problem—an NP-hard problem
[36]. Thus, we know that the existence of a polynomial algorithm for producing the
optimal classifier is unlikely. If we take the more courageous position of assuming
that P#NP, then there exists no polynomial algorithm for solving the CX learning
problem.

Given this rather difficult situation, we are faced with important questions to
answer: How does one go about producing a classifier from training data? How does
one go about improving an existing method for inducing classifiers? This dissertation
attempts to provide answers to these questions for the special case when the classifier

takes the form of a decision tree. We discuss decision trees in Section 2.3.

1.2.3 Zero-Order Classification Rules

To demonstrate the difficulty of the learning problem, let us examine the possi-

bility of finding a classification scheme using a very restricted class of classification

15

rules. We would like to find a set of rules, where each rule predicts one class. The
preconditions of the rules consist of a single conjunction. Each conjunct tests whether

an attribute has a particular value?. Thus each conjunct is of the form
(Ai = v;), where v; € Range(A;).

Such a conjunct is often referred to as an attribute-value pair. Since the conditions
of these rules do not contain quantifiers, we say they are zero-order logic formulas.
One extreme approach that can be adopted to generate a set of classification rules

of this type is to construct a rule for each example. Thus the example e,
e = (v1,v2,...,0m; C;),

would cause the following rule to be created:

IF (A; =vi)A(Az2=v)A.. . AN(Am = V)
THEN class is C}.

This approach is tantamount to rote learning, or pure memorization, and results in
the generation of a large number of very specific rules that have very low predictive
value for examples not included in the training set TE. The reason for this is
that many attribute-value pairs may actually be irrelevant to the determination of
an example’s class. Their inclusion in the preconditions serves only to limit the
predictive power of the rule. The problem is to discover which attribute-value pairs
are irrelevant.

On the other extreme, one could generate every possible combination of attribute-
value pairs, somehow evaluate the ability of each combination to predict each of
the classes, and finally pick a minimal cover set of these to form the rules. This
actually constitutes the ideal target for a learning program since nothing can do

better, assuming that a high degree of induction is acceptable. How many such

2For the purposes of this discussion, assume that all attributes are discrete.

16

formulas are there? The formulas are conjuncts of attribute-value pairs, so each is

of the form

/\ (Ai = ViS.‘)

i€l
for all possible I and s; where I C {1,2,...,m}, Vi, is the s;-th value in the range
of A;, and for each ¢, s; can be any value in {1,2,...,|Range(A;)|}. To get an idea
of how many such formulas there are, we make the following assumption: Each of

the m attributes can take on the average one of r possible values. Assuming that
Vi |Range(A:)| =1

makes it convenient to represent the space of all possible formulas by an m-digit
number expressed in base r + 1. Thus each attribute is assigned a digit which can
take up r values plus the value ‘blank’ to indicate that the corresponding attribute
does not appear in the formula. Excluding the all ‘blank’ formula, it is obvious that
there are (r + 1)™ — 1 possible formulas. A formula would form the left-hand side
of a rule while its right-hand side will consist of a class. Thus, we have to check the
validity of
k-[(r+1)" 1]

formulas against N examples (recall that k is the number of classes). For example,
if we have 10 attributes with 5 values each, and 10 classes, we get over 600 million
possible rules. These should then be checked against the N training examples for
consistency, yielding a potentially large subset of consistent rules that cover the
examples. The problem of finding a minimal cover of the N examples can be mapped
in a straightforward manner to a multiple-valued logic minimization problem. It is
therefore NP-complete [42].

This discussion clearly illustrates that an exhaustive search approach to finding a
set of classification rules is computationally infeasible. Further problems exist with
using rules. One has to insure that the rules do not make conflicting predictions and
so forth. For this, and for the ease and efficiency of classification using decision trees,

we turn our attention to the generation of classifiers in the form of decision trees. In

17

Section 2.3.1 we provide more detailed motivation for our choice of the decision tree

framework.

1.3 Inducing Decision Trees

Given a learning task (A,C,TFE), a decision tree classifier is a tree structure

having the following properties:

e Each nonterminal node is labelled with a test involving one of the attributes
in A. The test has a finite number of disjoint outcomes.

e Each outgoing branch from a nonterminal node corresponds to one of the out-
comes of the test at the node.

e Each node in the tree has a prediction k-vector associated with it.

e Each terminal (leaf) node is labelled with one of the & classes.

From this characterization of a decision tree, it should be obvious how the tree is
used to classify examples. Starting at the root, the attribute test is applied to the
example, and the branch corresponding to the resulting outcome is followed leading
us to one of the child nodes. The process is repeated until a leaf node is reached.
The tree then predicts that the example’s class is the class used to label the leaf. If
at any stage the outcome of a test does not have a corresponding branch, one of the

following two options is chosen:

1. Stop attempting to classify the example and claim that the tree fails to classify

the example.
2. Guess the example’s class based on the outcome prediction vector at the node.

The outcome prediction vector at a node is derived from the subset of training
examples that satisfy all the conditions appearing on the path from the root to that
node. We refer to this subset as the ezamples of the node. The prediction (class)
vector represents the relative frequency of appearance of the respective classes in the

node’s examples.

18

selectivity

normal low high

A line width

Low flowrate

I?rmal highXI l{high low
High Power Low Power Low Power High Power

Figure 1.1: A Sample Decision Tree

Example 1.3.1

Figure 1.1 shows a decision tree for the simplified example set of Table 1.1. Note

that this tree classifies all examples in the training set correctly.

Each leaf node in the decision tree corresponds to a classification rule. The
preconditions of the rule consist of the conjunction of conditions on the branches
from the root to that leaf. The action part of the rule is the class prediction of the
leaf. Thus a decision tree represents a set of rules. This set of rules possesses the
property that no more than one rule can ever match any given example.

We have so far introduced decision trees but we have not discussed how a decision
tree is generated for a given training set. Many questions should be springing to mind
at this point: How is an attribute selected at a node? What is the effect of selecting
one attribute over another? How do we handle continuous-valued attributes? What
is the effect of choice of training set on the resulting tree? We shall formally pose

and answer some of these questions in the following chapters.

1.4 Research Goals

Between the two extremes of rote learning and optimal rule set determination, a
wide range of heuristic methods exist for inducing classifiers from training data. The

focus of this dissertation is to study the problem of inducing decision tree classifiers

19

with the goal of producing “better” decision tree generation algorithms. Specific

questions that have to be answered in order to achieve the sought improvement are:

1. What do we mean by one decision tree being “better” than another?
This requires that we formulate our performance measures for decision trees,

and show that it is meaningful to claim that one tree is “better” than another.

2. How do we formulate an algorithm that produces better decision
trees? The answer to this question is dependent on first understanding what
makes a decision tree better and then designing the proper heuristic(s) used in
searching for a good decision tree. In the decision tree paradigm the issues to
be addressed concern decisions localized at a given node: selecting an attribute,
determining test outcomes corresponding to outgoing branches, and extending

the language used in representing test outcomes.

3. How do we handle continuous-valued attributes? In order to obtain
a “symbolic” classifier, continuous-valued attributes need to be discretized so

that a logical condition may be obtained for use in the decision tree.

4. How do we verify that the claimed improvement has been attained?
This is done by empirically testing the new algorithms on many data sets from
several synthetic and real-world domains and measuring their performance.
This gives us the means to establish improvement over other existing algo-

rithms.

The next section gives a brief outline of how the research goals were achieved and
states where the detailed account of the respective results may be found in this

dissertation.

1.5 Organization of this Document

Now that we have introduced the problem, provided enough motivation to estab-
lish its importance, and presented the research goals, we are ready to delve into the

traditional detailed account of how the research goals were satisfied.

20

Chapter IT includes a discussion of the basic classification learning problem (learn-
ing problem PE) along with the background covering basic approaches to solving the
learning problem both in the classification and machine learning literature. The
focus of Chapter II is to set the context for the decision tree approach to solving
the learning problem. A more detailed literature survey of relevant work on concept
learning in the machine learning literature is provided at the end of this dissertation
in Chapter IX. The latter chapter is intended to give a brief review of other work in
machine learning that generally constitutes extensions, modifications, or alternatives
to the basic approach addressed in this dissertation. Therefore, Chapter IX is by no
means necessary reading and is included for readers who are interested in a general
description of other available approaches.

Chapter III deals with issues of performance evaluation for decision trees. We
define several performance measures and show what we mean by one decision tree
being “better” than another. We show that the number of leaves in a tree is the
most important of the performance measure. Notably, we show that reducing a tree
with a smaller number of leaves is expected to have a lower error rate. The results
derived in this chapter serve as guiding principles for work in later chapters where
we discuss various means for improving decision tree generation.

In Chapter IV we first discuss the details of Quinlan’s ID3 [92] algorithm for
decision tree generation which plays the role of the starting point for us. We intro-
duce some of the problems inherent in the ID3 algorithm, and we present a simple
generalization of the algorithm that overcomes some of the problems. We develop
an algorithm, GID3, which has a user-specified parameter (TL) that controls its
branching at a node. We conduct simple experiments whose purpose is to verify
that, indeed, for some “proper” TL setting, GID3 overcomes some of the problems
of ID3. We then introduce the algorithm GID3*, which is not dependent on any
user-specified parameter. We show via empirical testing that GID3* generates a tree
that is superior to any member of the family of trees generated by GID3 for various
settings of its TL parameter. The empirical results also serve to support the formal

results as well as the informal claims presented in Chapter III.

21

Chapters V and VI deal with the discretization of continuous-valued attributes.
We derive formal results that serve to support our method for the binary discretiza-
tion of continuous-valued attributes in Chapter V. The results also serve to improve
the algorithm’s efficiency. In Chapter VI, we extend the algorithm to extract multiple
intervals rather than just two. We provide a formal argument to justify our exten-
sion, and we show empirically that the new capability indeed results in improved
decision trees. '

Chapter VII deals with the selection measure used by the tree generation algo-
rithm. We study the selection measures currently used in the decision tree generation
literature. Typical systems use evaluation functions that are class impurity measures.
The selection measures used by ID3, GID3, and GID3*, for example, are based on
a local information entropy minimization heuristic. We argue that the family of
impurity measures is not particularly appropriate for use in classification problems.
We define a family of measures, C-SEP, that we believe is better suited for attribute
selection in the context of top-down decision tree generation. We formulate a new
measure based on these arguments and implement it in the algorithm O-BTREE.
We then empirically verify that the new measure is indeed more appropriate for use
in classification problems.

We finally summarize the results, try to place matters in perspective, and outline

future research directions in Chapter VIII.

