CHAPTER II

BACKGROUND

“We’re right over Illinois yet,”

[said Huck Finn to Tom Sawyer in their boat.]

“and you can see for yourself that Indiana ain’t in sight...
Illinois is green, Indiana is pink.

You show me any pink down here if you can. No sir, it’s green.”
“Indiana pink? why, what a lie!”

“It ain’t no lie; I've seen it on the map, and it’s pink.”

S.L. Clemens, 189/.
(alias Mark Twain)
Tom Sawyer Abroad, ch. 3

The first efforts in machine learning centered on self-organizing systems that
adapted to their environment by adjusting internal parameters through feedback.
Such work included self-organizing and adaptive control systems[121, 136], early
work on genetic algorithms and evolutionary approaches to learning [33], and neural
modelling through the use of perceptrons [100]. Researchers in adaptive control
focussed primarily on continuous systems and eventually formed their own separate
branch that is today far removed from the machine learning field (as a subfield
of artificial intelligence). Research in perceptron learning suffered a major setback
as a result of Minsky and Papert’s [78] theoretical investigation which pointed out
serious limitations of single-layer linear threshold perceptron networks. Today, this
field of machine learning is regaining strength under the banner of Connectionism
[66]. Genetic Algorithms appear today in Holland’s Classifier systems [47] and other
systems [40].

22

23

One remarkably successful learning system of this early era is Samuel’s checker
player program [103] which provided a “proof of concept” that a machine learning
program can acquire useful knowledge autonomously. Samuel’s checker playing pro-
gram adapted its playing strategy as it played games with opponents. The program
was eventually able to consistently defeat its own author, and attained the regional
championship level.

About the time of the demise of perceptrons, the field experienced a shift in its
basic approach to the problem. Winston’s thesis [133] on learning high-level concep-
tual descriptions ushered in the second stage of work in machine learning; a stage
characterized by an emphasis on knowledge-intensive methods of representation and
methodology. The dominant view was that substantial a prior: knowledge in the
system was needed to make it learn—to drive its “sophisticated” learning mecha-
nisms [60, 63]. Major problems with the approaches of this era were due to the
use of algorithms with high computational complexity and to a lack of analysis and
understanding of the systems developed.

The third stage of machine learning research was fueled by the advent of expert
system technology. The need for learning techniques to automate the construction
of knowledge bases—the knowledge engineering process—turned attention back to
finding methods for the automatic induction of rules. The time-consuming and of-
ten unsuccessful attempts by programmers to capture an expert’s knowledge, and
the inability of experts to describe their own skills in terms of rules or procedures,
proved to be very substantial hurdles that were manifested in almost all attempts
at building expert systems [113]. The hope is that this knowledge acquisition bot-
tleneck [28] may potentially be circumvented by endowing programs with the ability
to acquire knowledge on their own. Current approaches to machine learning span
a wide spectrum of complexities: including pure syntactic induction, learning from
advice and analogy, learning from observation and discovery, and explanation-based
learning approaches that rely heavily on domain knowledge and semantics.

In this chapter we focus on reviewing the relevant literature on classification

research. Other relevant work in machine learning is briefly reviewed in Chapter IX.

24

We begin with the Bayesian solution to the learning problem PE defined in Chapter I,
since it is basic to all classification work. We then introduce previous work on decision
tree generation for classification learning. We also include a comparison with an
alternate, nonsymbolic approach, to learning classifications: neural networks. Neural
networks and decision trees are currently the most popular methods used in industrial

applications of machine learning.

2.1 The Bayesian Solution

Let TE be a training set of examples consisting of N m + 1-tuples
(vla V253 Um; CJ))

where each v; € Range(A;) is one of the values of the attribute A; € A, and C; € C
is one of the k classes. We assume that TE is drawn according to some probability
distribution on the examples and classes. We denote the probability density of this

distribution by D(e,c). The set of examples is
E = {(v1,vs,...,0n)|vi € Range(A;), A; € A}

and the set of classes is

C= {0, Ca,r v, Ci}.

Given the distribution D(e,c) on the sets E and C, we can define the two random
variables V and L. V’s range is the set of examples E while L’s is the set of classes
C. With this notation, the training set TE can be viewed as a set of N samples of
the values of the pairs (V; L) that are governed by the joint density D(e,c). Learning

problem PE is equivalent to finding a classifying function f,
f:E—C

such that the error rate of f is minimum. That is, for e € E,

Prob{f(V) % L} = [5 / D(e, c)dede

25

is minimized. The set S over which integration takes place is the set of m + 1-tuples

(e; ¢) such that f’s prediction for e’s class differs from c:

S = {{e;c)|f(e) # c}-

We use integration rather than summation (for the discrete variables) for convenience
and to keep the notation general. Note that this definition allows for the possibility
of the existence of tuples (e;C;) and (e; C;) such that C; # C;. In most practical
domains, the vector e is sufficient to specify a unique class. In this case, the distri-
bution D simply assigns a probability of 1.0 to one of the tuples above and zero to
all the others.

Since we are dealing with classification problems, the classes are discrete. One of
the integrals can therefore be immediately turned into a summation, so

Prob{f(V) # L} = c,ze:c (Prob{L =C;} [5 y Dc,-(e)de)

where D is the distribution on E given that L = C;, D(e|C;). The set 5% is the

set of examples for which f does not assign the class Cj,
S% = {ele € E A f(e) # Cj}.

The solution to the problem, shown to be optimal by T. Bayes, is known as the
Mazimum A Posteriori (MAP) classifier. It is the classifier g that assigns the class

C; to example e, where C; is the class in C for which
Prob{L = Cj|e}

is maximum among the classes in C. Note that this quantity can be evaluated using

the joint density and Bayes rule since

Prob{l = C; A V = e}

Prob{L = C;le} =

Prob{V = e}
e PI‘Ob{V o 6|L = CJ}PIOb{L = CJ}
¥ Prob{V = e}

Prob{V = e|L = C;}Prob{L = C;}
% Prob{L = C;}Prob{V =¢|L = C;}

26

where all the probabilities above are, in principle, obtainable from the joint density
D(e,c). However, it may not be possible to always obtain the analytical solution to
the required integration to get the marginal distributions.

Although the optimality of the solution was proven, it is usually not possible to
compute this solution. The reason for this is that the joint density D(e,c) is not
known a priori. Note that if this density were known, then all other interesting
conditional and non-conditional distributions can be obtained (see [132], p. 103).
For example, to obtain the probability density of V given that L = C;, D(e|L = Cj),
one would simply integrate

Dlell, =C;) = / D(e, c)dc

Sc;
where Sg, is the subset of the space for which L takes the value C;. As mentioned
earlier, one may not have enough knowledge about the spaces, or the analytical
solution to the integration may be too difficult. In typical applications of the Bayesian
approach, it is assumed that two distributions are given explicitly or obtainable
easily: the probability of any value of V given the class (the value of L), and the
prior probability of each of the classes, i.e. Prob{L = C;}, for j = 1,...,k. These
two pieces of information represent the required domain knowledge of the problem.
Note that once the densities D(e|L) and D(c) are given, a solution for the the class
C; that maximizes Prob{L = Cj|e} is easily obtainable for any given example—any
value e of V.

However, we are still left with the problem of obtaining the probability densities
D(e|L) and D(c) since in a typical application one may only be given the training
set. The straightforward approximation to circumvent this problem is to estimate
the distributions from the training data. Besides the fact that this is computationally
difficult since it requires estimating the probability of each possible combination of
values and classes, little is known about the suboptimality of the answer obtained
using these estimates [5]. Thus, we do not really know what kind of answer the

Bayesian solution provides if the needed distributions are estimated from the data.

A recent and apparently successful addition to learning algorithms is AUTO-

27

CLASS [10]. Designed primarily for clustering applications, the AUTOCLASS pro-
gram utilizes Bayesian classification techniques to induce both new classes and their
characterizations. We discuss this algorithm in the next section after introducing

parametric methods.

2.1.1 The PAC Learning Model

We introduced learning problems PE and CX in Chapter I. Both problems were
defined in terms of a search for an optimal solution. Thus for every learning task,
there exists a solution to the learning problem. Valiant [126] defined a class of learn-
ing problems by using a relaxed version of the definition of learning problem PE.
Rather than requiring that the minimal error classifier be produced, two parameters
were introduced: € and § representing an error rate and a confidence level, respec-
tively. Instead of finding an optimal classifier, the learning algorithm is to produce,
with arbitrarily high confidence, a classifier having an arbitrarily low error rate. The
added restriction is that the classifier be produced in polynomial time [43]. Hence
the goal is to find a Probably Approximately Correct (PAC) classifier.

More formally, given a class C of possible classifiers, and a fixed probability dis-

tribution on the examples, the following defines whether the class C is learnable.

Definition 2.1.1 A class of classifiers C is PAC learnable if for any 6 and ¢, 0 <

€,6 < 1.0 there exist a polynomial learning algorithm G and an integer poly(%,3)

such that for any training set with N > poly(1,}) examples, with probability at

least (1 —8), G produces a classifier from C having error rate at most ¢. The integer

returned by poly(1,}) is polynomially related to the two arguments.

Note that this definition defines a class of PAC-learnable classifiers. Not every
learning task need have a solution in a PAC-learnable class. Thus, work within the
framework of PAC-learnability is mainly concerned with determining which classes
of classifiers are learnable.

PAC learnability essentially characterizes the space of concepts learnable in the

polynomial realm. Hence, we view it as a formal characterization of the class of

28

concepts that our learning machine, defined in Chapter I, is capable of learning.
Whereas our intuitive definition of learning did not specify the type of learning
task, the PAC-learnability definition implicitly restricts the learning task to be that
of concept learning. The parameters § and ¢ give us the means to quantitatively
express the “improvement in performance” we referred to in our intuitive definition
of learning. For a critique of the PAC learning model along with other important

notions in machine learning see [8].

2.2 Pattern Recognition Techniques

Other methods for learning classifiers from data have been used in the past. Most
such methods, however, assume that the “variables” (attributes) are continuous-
valued [46, 86, 89, 114]. Given that the attributes are continuous, one could do one

of two things:

Parametric Estimation: which involves estimating the probability distributions
of each of the classes over the variables. When a future example is to be clas-
sified, the mazimum likelihood principle is applied to select the class with the
highest probability given the data. This gives the Bayes optimal solution if the
estimate of the distribution is correct and the classes have equal prior proba-
bilities. If the distributions are unimodal, then finding the most likely class is
easy. The difficulty arises when the distributions are multimodal. Partitioning
the space into unimodal regions becomes necessary. Many issues come up in
this paradigm: How to do the partitioning effectively? How to find a good
parametric fit for the estimated distribution? What happens if the estimated
distribution does not fit the data correctly? Maximum likelihood methods,
however, are considered ill-founded when the classes have different prior prob-
abilities [132]. If a meaningful set of priors can be obtained, then the MAP
criterion can be used to obtain the solution (as explained in the discussion of

the previous section).

29

K Nearest Neighbours (KNN): This method does not require estimating dis-
tributions. The training data are retained and a new example is compared
against the K nearest neighbours to it. This is usually done by measuring the
“distance” of the new example along the m dimensions of the attributes. The
class assigned to the new example is typically the majority class among the K

nearest neighbours in the training data [16, 85].

Both methods usually require that all attributes be continuous in order to be
able to estimate distributions with smooth functions that are easy to deal with
analytically, or in order to be able to measure some “distance” along one of the
dimensions. The K nearest neighbour method is reincarnated in the AI/machine
learning fields in generalized form called case-based classification. Stanfill and Waltz
[118] give a good account of this approach. They provide measures that enable one
to measure “distance” between values of discrete attributes.

One of the significant Bayesian classifiers that has met with some success is AU-
TOCLASS [10]. AUTOCLASS utilizes Bayesian classification methods to invent
classes from data (conceptual clustering) and to estimate the “correct” parameters
for the model used to describe the classes. If the classes are known a priori, AUTO-
CLASS can be used to learn classifiers. AUTOCLASS assumes a model (distribution)
on the data and attempts to tune the proper parameterization for that model. If
an attribute is not distributed according to, say a Gaussian distribution, then tricks
can be used to make it so by applying a proper transformation to it'. AUTOCLASS
scored a great success for machine learning approaches when it was applied to a
conceptual ‘clustering task in the domain of astronomy. AUTOCLASS invented new
clusters of stars and galaxies (infrared sources) that differed significantly from that
of NASA’s experts. The significance of this is in the fact that the new clusters
clearly reflected physical phenomena in the data. The AUTOCLASS infrared source

classification became the basis of a new star catalog [10, 11].

1Peter Cheeseman, private communication, January 1991, NASA-AMES Research Center.

30
2.3 Decision Trees

As was stated in Chapter I, the focus of this dissertation is limited to investigating
potential approaches to solving the learning problem within the framework of decision
trees. Before describing what is involved in generating decision trees, we briefly pause

to point out why we think the decision tree-based approach is a reasonable one.

2.3.1 Why the Decision Tree Approach?

As mentioned earlier, decision trees offer one approach to the concept learning
problem. That, however, does not immediately make them the preferred approach.
Why is the decision tree approach preferred to others such as neural networks, clas-
sification rules, and so forth? We do not have a compelling reason that rules out
other approaches. As a matter of fact, the decision tree approach does impose limi-
tations that may make many solutions unattainable. We propose that the following
reasons make the study of decision trees, as an approach to the learning problem, a

worthwhile endeavour:

1. A decision tree represents a set of classification rules for which the control
problem is implicitly solved. This makes the use of a decision tree classifier
more convenient. If one were exploring the space of classification rules directly,

then the control problem becomes a significant issue to address [39].

2. The decision tree methodology is inherently efficient and is thus suitable for
dealing with large data sets. By considering only a single dimension at a time,
the léa.rning problem is progressively partitioned into smaller subproblems hav-
ing smaller sets of training data. This makes it more efficient at handling large
data sets compared with an alternative algorithm that repeatedly examines the

entire data set (c.f. learning one rule at a time, or KNN approaches).

3. The final set of rules produced is relatively easy to understand by humans since

it is expressed in terms of simple high-level conditions. While this is not an

31

advantage over a rule learning approach, it is advantageous to neural networks,

KNN, or other pattern recognition techniques.

4. Decision trees are an example of non-parametric approach: the basic decision
tree generation framework we adopt does not require extra information not
given in the training data. For example, we require no domain knowledge or

prior knowledge of distributions on the data or classes.

These factors, taken together, make decision trees worth pursuing as a potential
solution to the learning problem. Granted that each of these “advantages” comes at a
price. For the first, the expressive power is restricted. For the second, the partitioning
of data may also lead to problems in terms of loss of information and making decisions
based on excessively small samples of data. For the third, comprehensibility may not
be essential and only correctness may be. However, we take the position that it is
interesting to find out how well one can do given this seemingly reasonable and
promising framework. The issues of efficiency and convenience are also of great

importance from an industrial applications perspective.

2.3.2 Decision Tree Generation

The formulation of a no lookahead, nonbacktracking algorithm for decision tree

generation requires the specification of the following four rules [5]:

DRule 1: A rule for choosing an attribute to branch out of a node.

DRule 2: A rule for choosing a particular partition of the examples based on
the selected attribute, i.e. a rule to select a condition involving the selected
attribute and the set of outcomes of the test.

DRule 3: A rule to decide when to stop partitioning a node, thus deeming it a

leaf node.

DRule 4: A rule for labeling a leaf node with a class.

In this dissertation, we are particularly concerned with the details of DRules 1,

and 2. For DRule 3, we assume that a node continues to be partitioned until all

32

of its examples are of one class or all of its examples have the same values for all
of the attributes. In the former case, DRule 4 becomes trivial. In the latter, we
assign multiple classes with confidence factors. If a single class prediction per leaf is
required, we label the leaf with the majority class.

DRules 1 and 2 are essential in determining the structure of the tree, and con-
sequently its effectiveness as a classifier. DRule 3’s effect can easily be achieved by
employing a good tree pruning algorithm after the tree has been generated [5, 92, 93].
In [5] it is recommended that the tree be generated without stopping early, and then
pruning it upward to an “acceptable” level according to a cost measure. See [125] for
a discussion of some pruning techniques and for a method that employs a different
stopping rule during decision tree generation.

The basic functioning of a decision tree generation algorithm is depicted in the
high-level flowchart of Figure 2.1. This flowchart serves to illustrate where each of
the DRules fits within the algorithm. Note that for any given node, all continuous-
valued attributes are discretized prior to formulating a test for each of the attributes.
This allows us to assume that all attributes are discrete and formulate our decision
tree generation algorithms accordingly. We shall pay particular attention to the
continuous-valued attribute discretization process in Chapters V and VI. To gener-
ate a decision tree, a root node is initialized and the entire training set of examples is
assigned as the set of examples for the node. The algorithm is then invoked passing
it the new root and the training set.

One of the earliest decision tree generation systems was Hunt et al's Concept
Learning System (CLS) [48]. CLS generates trees that attempt to minimize the cost
of classifying an object. The cost is defined in terms of two components: the cost
of testing the value of an attribute, and the cost of misclassifying an object. CLS
employed a computationally expensive search of all possible decision trees of some
set depth. The search strategy is a lookahead strategy similar to minimax, and could
require a substantial amount of computation [92].

Quinlan [91, 92] modified the CLS algorithm to make it more efficient by avoiding

the expensive lookahead search. He employed a heuristic, hill climbing, nonback-

33

'

T

Assign class to } DRule4

node

Should node be
a leaf ?

Discretize all
continuous-valued
attributes

} DRule3

Formulate a test and

DRule2 { its outcomes for each discrete
or discretized attribute

Select an attribute and
DRulel { generate a child node

for each outcome of its test

ex_child j<-- examples in node that
satisfy child; 's test

Loop: for each child node
child;

!

Generate_Tree(child;, ex_child ;)

Figure 2.1: Flowchart of a Skeleton Algorithm for Decision Tree Generation.

34

tracking algorithm for generating the decision tree. The goodness of the generated
tree depends entirely on the attribute selection measure employed. Quinlan used
an information entropy minimization heuristic to select attributes. This heuristic
appeared to work very well, and resulted in relatively compact trees. We discuss
the details of this algorithm, named ID3 (Interactive Dichotomizer 3), in the next
chapter. ID3 is now a popular, commercially available, program that is being used
in many applications. As such, ID3 will serve as the basic decision tree generation
algorithm that we will try to improve.

The use of the information entropy heuristic appeared earlier in the pattern recog-
nition and information theory literature [5, 111, 131]. One of Quinlan’s [90, 91, 92]
important contributions was to introduce it to the Al field and successfully apply
it to real-world learning problems. A more general class of impurity measures, of
which the entropy heuristic is an instance, was used for decision tree generation by
Breiman et al [5] (see Chapter VII for further details). Breiman et al claimed that
interchanging any of the measures in this class of measures did not significantly affect
the quality of the resulting decision tree. Their emphasis, however, was not on the
tree growing step. Rather, they concentrated on schemes for pruning the generated
tree effectively. Any tree pruning will, in general, cause the tree to be no longer
consistent? with the training set.

Although loss of consistency may be acceptable if the overall error rate is reduced,
pruning is a last resort solution from the tree generation perspective. In other words,
if one had a “better” algorithm for decision tree growing, then one could always prune
the generated tree later to further improve it. In this dissertation, we basically adopt
the approach that one should attempt to generate a “good” tree in the first place.
We are thus on a quest for a better decision tree growing algorithm. DRules 1 and
2 are therefore of great importance to us. Another question to be answered, is what
do we mean by an algorithm generating “better” decision trees? We address this
question in Chapter III.

As mentioned above, the ID3 algorithm employs the information entropy mini-

2A tree is said to be consistent with the training set if it classifies the training set without error.

35

mization heuristic to achieve DRule 1. The heuristic is discussed in detail in chap-
ter IV. For DRule2, ID3 simply creates a separate branch for each individual value
of the selected attribute . We discuss the consequences of this in Chapter IV. To
make the description so far more concrete, we give an example of a decision tree

generated by the ID3 algorithm.

Example 2.3.1

The decision tree depicted in Figure 1.1 is the tree that ID3 generates for the example
set given in Example 1.2.1. Note that a branch is created for every value of the
selected attribute. The conditions on the branches are therefore simple attribute-
value pairs of the form (attribute = value). The decision tree corresponds to a set

of five zero-order classification rules.

2.3.3 Decision Trees Versus Classification Rules

As we mentioned earlier, one of the advantages of using the decision tree frame-
work for representing sets of rules is that the control problem is solved. Namely,
when using the rules to classify examples, at most one rule will match any single
example. The matching stage becomes very efficient since only the conditions of the
matching rule will be tested. In addition, because they strictly form a partition on
the example space, with each rule being a block of the partition, rules are easy to
understand: they never overlap and they can be considered in isolation. All this
convenience comes at a price, however.

Although every decision tree corresponds to a set of rules, the converse is not
true. A set of rules may not be representable by a single decision tree. This can be

illustrated by the following simple example.

Example 2.3.2

Consider the following two rules for the two classes C1 and C2:

IF (A=a) Then Class is C1
IF (B=b) Then Class is C2

36

' (B)
A-R*" B=bAB¢b
:

B=b B=+b A=a Aza
i =
IF (A=a) Then Class C1 IF (B=b) Then Class C2
IF (A#a) & (B=b) Then Class C2 IF (B#b) & (A=a) Then Class C1

Figure 2.2: Two Approximating Decision Trees.

These two rules are not representable in a single decision tree. The closest one
could come to this is by the approximating trees of Figure 2.2. Note that for either
tree, one of the two rules will have an excessive condition involving another attribute.
Specifically, a rule set that comes from one tree must share at least one test: the test

at the root node.

What are the implications of this? The space of trees is more constrained than
the space of rules for the same learning task. Both spaces are large and an exhaustive
search approach is intractable. Finding optimal decision trees (with respect to size)
is also NP-hard. It is not clear whether the limitation arising from the fact that the
space of trees is smaller is a serious one. Since we do not yet have the final word on
decision trees, we take the position that decision trees merit further study. We will
live with this limitation, see how well we can do with decision trees, and attempt to
derive “better” decision trees when possible. This will allow us to focus purely on
the induction problem without having to deal with the additional control problem

associated with using rules for classification.

2.3.4 Limitations of the Attribute-Value Pair Representation Scheme

We mentioned that the examples are expressed in the attribute-value pair no-

tation. This language for expressing examples produces certain restrictions on the

37

concepts that a learning algorithm can express. In the type of supervised learning
that this thesis is concerned with, we do not pay attention to the feature discov-
ery problem. Thus our learning algorithm is not intended to define (invent) new
attributes in terms of existing ones. We assume that all the desired attributes have
been defined a priori. The task of the learning algorithm is to discover which subset
of attribute-value pairs is relevant to each class.

If new attributes need to be formulated, then that can always be done as a
preprocessing stage. For example, it may be desirable that the learning algorithm

have access to facts such as

Al > (A2 + A3)

where A;, As, and Aj are attributes in the problem. In general, the learning al-
gorithm is not supposed to have access to “domain knowledge” that assures the
meaningfulness of comparing the value of A; to the sum of the values of A, and As.
If such knowledge is to be made available to the learning program, then this may be
done by defining such a relation as a zero-order predicate, say Ao, which takes on

the value TRUE for each example for which the relation
Ay > (Az + As)

holds, and the value FALSE otherwise. We may thus encode arbitrary relations
between the attributes in terms of new binary-valued discrete attributes. Hence, in
principle, at the cost of increasing the storage needed for the training data, we may
encode arbitrarily many relations between attributes. However, such encoding must
be defined ahead of time by the users or by another algorithm that possesses the
necessary knowledge.

Another limitation of the attribute-value pair notation is that it does not encode
any ordering information between examples. For example, the training data may
be a set of recorded time-series measurements. In this case, we may capture such
ordering information either by adding new attributes or transforming the problem
entirely. For example, time-dependent trends can be encoded in new attributes

that measure entities such as: time averages, slopes, local minima and maxima,

38

and other properties derived from multiple ordered examples. Thus, in principle,
given sufficient preprocessing the “simple” learning algorithms that deal strictly with
attribute-value pair notation can be made very useful.

In general, without the proper preprocessing of the data to encode inter- and
intra-example relations in terms of new attributes, an attribute-value pair represen-
tation scheme cannot represent such information. If such knowledge is essential to
the classification task then without the proper preprocessing, the task becomes very

difficult, probably impossible, for the type of learning algorithm we are interested in.

2.4 Perceptrons and Neural Networks

Perceptrons and Neural Networks represent another type of classifier. Such clas-
sifiers may be considered as strictly “black box” classifiers. Statistical approaches are
typically model-based: they attempt to model the data distribution and then make
an optimal decision based on the fit. KNN-based approaches call for retaining the
data and comparing new examples with the “nearest” K training examples. Deci-
sion tree/symbolic rule classifier approaches produce classifiers in a symbolic logical
format that is intended to be meaningful to humans. However, perceptrons and neu-
ral networks are essentially “curve fitting” techniques where the target language in
which the fit (classifier) is expressed is intended to be strictly an internal represen-
tation for which no “understandable” interpretation need be found. We discuss this
issue of “comprehensibility” in Section 2.4.2 below.

A perceptron is a linear thresholding unit. It computes a linear combination
of its input;s and compares the result with a fixed threshold. The input values are
multiplied by their respective weights and then summed. The perceptron “learns” by
adjusting the weights based on a learning algorithm that compares the perceptron’s
output with the desired output for each training example. The process of classifying
training examples and then adjusting weights is iterated until the perceptron classifies
the training set correctly.

Minsky and Papert [78], in a critique of Rosenblatt’s [100] claims that percep-

39

trons are powerful learning systems and that they hold great promise, showed that
a single layer perceptron network is capable of learning only a very restricted class
of concepts. This caused a widespread loss of interest in perceptrons without regard
to the fact that the limitations did not necessarily apply to multi-layered networks.
The perceptron made its comeback in the generalized form of neural networks [66]
after a two-decade long hiatus. The units in such networks are generalized percep-
tron units: they have a nonlinear thresholding function (a sigmoid function) into
which the linear weighted sums are fed. In this form, and with at least one inner
layer of units, neural networks have a dramatically enhanced representational power.
Many learning algorithms exist for training these nets. The most popular is based
on propagating backward the error in the network’s prediction to the inner layer
units and adjusting the weights to minimize this error [66]. It has been shown that if
the weight adjustments are “small enough,” the back propagation learning algorithm
will eventually converge on a stable set of weights. This solution, however, is not
necessarily optimal (in terms of minimizing the expected error of the network). In
addition, if the weight adjustments are small, the network typically requires a huge
number of iterations through the training set to converge.

The main attraction of perceptron/neural network type approaches is due to two
factors: simplicity of hardware implementation and potential physiological “similar-
ity” to human brain mechanisms. The simplicity of the hardware implementation
comes from the hope that each unit in the network can be implemented with very
simple, inexpensive, uniform circuits. The physiological plausibility facet of the at-

traction was summarized well by Minsky and Papert [78]

The popularity of the perceptron as a model for an intelligent, general
purpose learning algorithm has its roots, we think, in an image of the brain
itself as a rather loosely organized, randomly interconnected network of
relatively simple devices. (p. 18)

2.4.1 Problems with the Neural Network Approach

An advantage of a decision tree based approach over a neural network or Bayesian

classification based approach is in the interpretability or comprehensibility of the

